Temporomandibular disorders and mental health: shared etiologies and treatment approaches | The Journal of Headache and Pain

Tran C, Ghahreman K, Huppa C, Gallagher JE (2022) Management of temporomandibular disorders: a rapid review of systematic reviews and guidelines. Int J Oral Max Surg 51:1211–1225. https://doi.org/10.1016/j.ijom.2021.11.009
Google Scholar
Prevalence of TMJD and its Signs and Symptoms| National Institute of Dental and Craniofacial Research Accessed 20 Mar 2024
Maini K, Dua A (2024) Temporomandibular syndrome. In: StatPearls. StatPearls Publishing, Treasure Island (FL)
Manfredini D, Häggman-Henrikson B, Al Jaghsi A et al (2025) Temporomandibular disorders: INfORM/IADR key points for good clinical practice based on standard of care. Cranio® 43:1–5. https://doi.org/10.1080/08869634.2024.2405298
Google Scholar
Schiffman E, Ohrbach R, Truelove E et al (2014) Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: recommendations of the international RDC/TMD consortium network** and orofacial pain special interest group†. J Oral Facial Pain H 28:6–27. https://doi.org/10.11607/jop.1151
Google Scholar
Barjandi G, Kosek E, Hedenberg-Magnusson B et al (2021) Comorbid conditions in temporomandibular disorders myalgia and myofascial pain compared to fibromyalgia. J Clin Med 10:3138. https://doi.org/10.3390/jcm10143138
Google Scholar
Samim F, Epstein JB (2019) Orofacial neuralgia following whiplash-associated trauma: case reports and literature review. SN Compr Clin Med 1:627–632. https://doi.org/10.1007/s42399-019-00095-0
Google Scholar
Manfredini D, Favero L, Gregorini G et al (2013) Natural course of temporomandibular disorders with low pain-related impairment: a 2-to-3-year follow-up study. J Oral Rehabil 40:436–442. https://doi.org/10.1111/joor.12047
Google Scholar
Suvinen TI, Kemppainen P, Le Bell Y et al (2013) Research diagnostic criteria axis II in screening and as a part of biopsychosocial subtyping of Finnish patients with temporomandibular disorder pain. J Orofac Pain 27:314–324. https://doi.org/10.11607/jop.1145
Google Scholar
Hietaharju M, Näpänkangas R, Sipilä K et al (2021) Importance of the graded chronic pain scale as a biopsychosocial screening instrument in TMD pain patient subtyping. J Oral Facial Pain Headache 35:303–316. https://doi.org/10.11607/ofph.2983
Google Scholar
Kyu HH, Abate D, Abate KH et al (2018) Global, regional, and National disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet 392:1859–1922. https://doi.org/10.1016/S0140-6736(18)32335-3
Google Scholar
Yao C, Zhang Y, Lu P et al (2023) Exploring the bidirectional relationship between pain and mental disorders: a comprehensive Mendelian randomization study. J Headache Pain 24:82. https://doi.org/10.1186/s10194-023-01612-2
Google Scholar
De La Torre Canales G, Câmara-Souza MB, Muñoz Lora VRM et al (2018) Prevalence of psychosocial impairment in temporomandibular disorder patients: A systematic review. J Oral Rehabil 45:881–889. https://doi.org/10.1111/joor.12685
Google Scholar
Manfredini D, Ahlberg J, Winocur E et al (2011) Correlation of RDC/TMD axis I diagnoses and axis II pain-related disability. A multicenter study. Clin Oral Investig 15:749–756. https://doi.org/10.1007/s00784-010-0444-4
Google Scholar
De la Torre Canales G, Bonjardim LR, Poluha RL et al (2020) Correlation between physical and psychosocial findings in a population of temporomandibular disorder patients. Int J Prosthodont 33:155–159. https://doi.org/10.11607/ijp.5847
Google Scholar
Durham J, Breckons M, Vale L, Shen J (2023) DEEP study: modeling outcomes and costs of persistent orofacial pain. JDR Clin Translational Res 8:16–26. https://doi.org/10.1177/23800844211063870
Google Scholar
Yap AU, Lee DZR (2023) Painful temporomandibular disorders in Confucian-heritage cultures: their inter-relationship with bodily pain, psychological well-being and distress. J Oral Rehabil 50:948–957. https://doi.org/10.1111/joor.13522
Google Scholar
Omezli MM, Torul D, Varer Akpinar C (2023) Temporomandibular disorder severity and its association with psychosocial and sociodemographic factors in Turkish adults. BMC Oral Health 23:34. https://doi.org/10.1186/s12903-023-02737-1
Google Scholar
Sousa CRA, Arsati YB, de Velly OL AM, et al (2023) Catastrophizing is associated with pain-related disability in temporomandibular disorders. Braz Oral Res 37:e070. https://doi.org/10.1590/1807-3107bor-2023.vol37.0070
Google Scholar
Sánchez-Valle J, Valencia A (2023) Molecular bases of comorbidities: present and future perspectives. Trends Genet 39:773–786. https://doi.org/10.1016/j.tig.2023.06.003
Google Scholar
Kant T, Koyama E, Zai CC et al (2022) COMT Val/Met and psychopathic traits in children and adolescents: A systematic review and new evidence of a developmental trajectory toward psychopathy. Int J Mol Sci 23:1782. https://doi.org/10.3390/ijms23031782
Google Scholar
Vetterlein A, Monzel M, Reuter M (2023) Are catechol-O-methyltransferase gene polymorphisms genetic markers for pain sensitivity after all? – A review and meta-analysis. Neurosci Biobehav Rev 148:105112. https://doi.org/10.1016/j.neubiorev.2023.105112
Google Scholar
Yang M, Baser RE, Khanin R et al (2023) COMT Val158Met affects the analgesic response to acupuncture among Cancer survivors with chronic pain. J Pain 24:1721–1730. https://doi.org/10.1016/j.jpain.2023.05.005
Google Scholar
Zhang X, Kanter K, Chen J et al (2020) Low catechol-O-methyltransferase and stress potentiate functional pain and depressive behavior, especially in female mice. Pain 161:446–458. https://doi.org/10.1097/j.pain.0000000000001734
Google Scholar
Slade GD, Sanders AE, Ohrbach R et al (2015) COMT diplotype amplifies effect of stress on risk of temporomandibular pain. J Dent Res 94:1187–1195. https://doi.org/10.1177/0022034515595043
Google Scholar
Smith SB, Mir E, Bair E et al (2013) Genetic variants associated with development of TMD and its intermediate phenotypes: the genetic architecture of TMD in the OPPERA prospective cohort study. J Pain 14. https://doi.org/10.1016/j.jpain.2013.09.004
Rizvi SJ, Gandhi W, Salomons T (2021) Reward processing as a common diathesis for chronic pain and depression. Neurosci Biobehavioral Reviews 127:749–760. https://doi.org/10.1016/j.neubiorev.2021.04.033
Google Scholar
Cormier S, Lavigne GL, Choinière M, Rainville P (2016) Expectations predict chronic pain treatment outcomes. Pain 157:329. https://doi.org/10.1097/j.pain.0000000000000379
Google Scholar
Liu Q, Ely BA, Schwartz JJ et al (2021) Reward function as an outcome predictor in youth with mood and anxiety symptoms. J Affect Disorders 278:433–442. https://doi.org/10.1016/j.jad.2020.09.074
Google Scholar
Cormier S, Lévesque-Lacasse A (2021) Biopsychosocial characteristics of patients with chronic pain expecting different levels of pain relief in the context of multidisciplinary treatments. Clin J Pain 37:11. https://doi.org/10.1097/AJP.0000000000000885
Google Scholar
Vrieze E, Demyttenaere K, Bruffaerts R et al (2014) Dimensions in major depressive disorder and their relevance for treatment outcome. J Affect Disord 155:35–41. https://doi.org/10.1016/j.jad.2013.10.020
Google Scholar
Everaert J, Koster EHW, Derakshan N (2012) The combined cognitive bias hypothesis in depression. Clin Psychol Rev 32:413–424. https://doi.org/10.1016/j.cpr.2012.04.003
Google Scholar
Ohrbach R, Michelotti A (2015) Psychological considerations. In: Kandasamy S, Greene CS, Rinchuse DJ, Stockstill JW (eds) TMD and orthodontics: A clinical guide for the orthodontist. Springer International Publishing, Cham, pp 49–61
Google Scholar
Jc MR C, I C (2021) The intensity of awake Bruxism episodes is increased in individuals with high trait anxiety. Clin Oral Invest 25. https://doi.org/10.1007/s00784-020-03650-5
Sadeghlo N, Selvanathan J, Koshkebaghi D, Cioffi I (2024) Aberrant occlusal sensitivity in adults with increased somatosensory amplification: a case-control study. Clin Oral Investig 28:250. https://doi.org/10.1007/s00784-024-05628-z
Google Scholar
Chow JC, Cioffi I (2019) Effects of trait anxiety, somatosensory amplification, and facial pain on self-reported oral behaviors. Clin Oral Invest 23:1653–1661. https://doi.org/10.1007/s00784-018-2600-1
Google Scholar
Bucci R, Koutris M, Palla S et al (2020) Occlusal tactile acuity in temporomandibular disorder pain patients: a case-control study. J Oral Rehabil 47:923–929. https://doi.org/10.1111/joor.12996
Google Scholar
Campbell CM, Edwards RR (2009) Mind-body interactions in pain: the neurophysiology of anxious and catastrophic pain-related thoughts. Transl Res 153:97–101. https://doi.org/10.1016/j.trsl.2008.12.002
Google Scholar
Craner JR, Gilliam WP, Sperry JA (2016) Rumination, magnification, and helplessness: how do different aspects of pain catastrophizing relate to pain severity and functioning?? Clin J Pain 32:1028–1035. https://doi.org/10.1097/AJP.0000000000000355
Google Scholar
Zhang F, Baranova A, Zhou C et al (2021) Causal influences of neuroticism on mental health and cardiovascular disease. Hum Genet 140:1267–1281. https://doi.org/10.1007/s00439-021-02288-x
Google Scholar
Mitrowska-Guźmińska M, Gębska M, Jonko K et al (2022) Effect of personality type on the occurrence of temporomandibular Disorders—A Cross-Sectional study. Int J Environ Res Public Health 20:352. https://doi.org/10.3390/ijerph20010352
Google Scholar
Assiri K (2024) Relationships between personality factors and DC/TMD axis II scores of psychosocial impairment among patients with pain related temporomandibular disorders. Sci Rep 14:26869. https://doi.org/10.1038/s41598-024-78216-6
Google Scholar
Almutairi AF, Albesher N, Aljohani M et al (2021) Association of oral parafunctional habits with anxiety and the Big-Five personality traits in the Saudi adult population. Saudi Dent J 33:90–98. https://doi.org/10.1016/j.sdentj.2020.01.003
Google Scholar
Sanders AE, Akinkugbe AA, Bair E et al (2016) Subjective sleep quality deteriorates before development of painful temporomandibular disorder. J Pain 17:669–677. https://doi.org/10.1016/j.jpain.2016.02.004
Google Scholar
Hertenstein E, Feige B, Gmeiner T et al (2019) Insomnia as a predictor of mental disorders: a systematic review and meta-analysis. Sleep Med Rev 43:96–105. https://doi.org/10.1016/j.smrv.2018.10.006
Google Scholar
Karimi R, Mallah N, Scherer R et al (2023) Sleep quality as a mediator of the relation between depression and chronic pain: a systematic review and meta-analysis. Br J Anaesth 130:747–762. https://doi.org/10.1016/j.bja.2023.02.036
Google Scholar
Yang Y, Xu L, Liu S et al (2024) Analysis of risk factors and interactions for pain in temporomandibular disorder: A cross-sectional study. J Rehabil 51:1113–1122. https://doi.org/10.1111/joor.13682
Google Scholar
Xiang Y, Song J, Liang Y et al (2023) Causal relationship between psychiatric traits and temporomandibular disorders: a bidirectional two-sample Mendelian randomization study. Clin Oral Investig 27:7513–7521. https://doi.org/10.1007/s00784-023-05339-x
Google Scholar
Que H, Zhang Q, Xu S et al (2024) Bi-directional two-sample Mendelian randomization identifies causal association of depression with temporomandibular disorders. J Rehabil 51:1653–1661. https://doi.org/10.1111/joor.13771
Google Scholar
Liao C-H, Chang C-S, Chang S-N et al (2011) The risk of temporomandibular disorder in patients with depression: a population-based cohort study. Commun Dent Oral Epidemiol 39:525–531. https://doi.org/10.1111/j.1600-0528.2011.00621.x
Google Scholar
Slade GD, Ohrbach R, Greenspan JD et al (2016) Painful temporomandibular disorder: decade of discovery from OPPERA studies. J Dent Res 95:1084–1092. https://doi.org/10.1177/0022034516653743
Google Scholar
Fillingim RB, Ohrbach R, Greenspan JD et al (2013) Psychological factors associated with development of TMD: the OPPERA prospective cohort study. J Pain 14:T75–90. https://doi.org/10.1016/j.jpain.2013.06.009
Google Scholar
Xiao F, Hu A, Meng B et al (2023) PVH-Peri5 pathway for Stress-Coping oromotor and anxious behaviors in mice. J Dent Res 102:227–237. https://doi.org/10.1177/00220345221130305
Google Scholar
Xu L, Cai B, Fan S et al (2021) Association of oral behaviors with anxiety, depression, and jaw function in patients with temporomandibular disorders in China: A Cross-Sectional study. Med Sci Monit 27:e929985–e929981. e929985-7
Google Scholar
Svensson P, Jadidi F, Arima T et al (2008) Relationships between craniofacial pain and Bruxism. J Oral Rehabil 35:524–547. https://doi.org/10.1111/j.1365-2842.2008.01852.x
Google Scholar
Sinclair A, Wieckiewicz M, Ettlin D et al (2022) Temporomandibular disorders in patients with polysomnographic diagnosis of sleep Bruxism: a case–control study. Sleep Breath 26:941–948. https://doi.org/10.1007/s11325-021-02449-2
Google Scholar
Garland EL, Trøstheim M, Eikemo M et al (2020) Anhedonia in chronic pain and prescription opioid misuse. Psychol Med 50:1977–1988. https://doi.org/10.1017/S0033291719002010
Google Scholar
Mercer Lindsay N, Chen C, Gilam G et al (2021) Brain circuits for pain and its treatment. Sci Transl Med 13:eabj7360. https://doi.org/10.1126/scitranslmed.abj7360
Google Scholar
Sessle BJ (2011) Peripheral and central mechanisms of orofacial inflammatory pain. Int Rev Neurobiol 97:179–206. https://doi.org/10.1016/B978-0-12-385198-7.00007-2
Google Scholar
Steinhoff MS, von Mentzer B, Geppetti P et al (2014) Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev 94:265–301. https://doi.org/10.1152/physrev.00031.2013
Google Scholar
Fan W, Zhu X, He Y et al (2019) The role of satellite glial cells in orofacial pain. J Neurosci Res 97:393–401. https://doi.org/10.1002/jnr.24341
Google Scholar
Zhang Y, Song N, Liu F et al (2019) Activation of mitogen-activated protein kinases in satellite glial cells of the trigeminal ganglion contributes to substance P-mediated inflammatory pain. Int J Oral Sci 11:24. https://doi.org/10.1038/s41368-019-0055-0
Google Scholar
Afroz S, Arakaki R, Iwasa T et al (2019) CGRP induces differential regulation of cytokines from satellite glial cells in trigeminal ganglia and orofacial nociception. Int J Mol Sci 20:711. https://doi.org/10.3390/ijms20030711
Google Scholar
Zhang P, Bi R-Y, Gan Y-H (2018) Glial interleukin-1β upregulates neuronal sodium channel 1.7 in trigeminal ganglion contributing to temporomandibular joint inflammatory hypernociception in rats. J Neuroinflammation 15:117. https://doi.org/10.1186/s12974-018-1154-0
Google Scholar
Zha T, Fang X, Wan J et al (2025) Preclinical insights into the role of Kir4.1 in chronic pain and depression: mechanisms and therapeutic potential. Biomolecules 15:165. https://doi.org/10.3390/biom15020165
Google Scholar
Zhang Y-Y, Liu F, Lin J et al (2022) Activation of the N-methyl-D-aspartate receptor contributes to orofacial neuropathic and inflammatory allodynia by facilitating calcium-calmodulin-dependent protein kinase II phosphorylation in mice. Brain Res Bull 185:174–192. https://doi.org/10.1016/j.brainresbull.2022.05.003
Google Scholar
Lin J, Zhang Y-Y, Liu F et al (2019) The P2Y14 receptor in the trigeminal ganglion contributes to the maintenance of inflammatory pain. Neurochem Int 131:104567. https://doi.org/10.1016/j.neuint.2019.104567
Google Scholar
Velasco E, Flores-Cortés M, Guerra-Armas J et al (2024) Is chronic pain caused by central sensitization? A review and critical point of view. Neurosci Biobehavioral Reviews 167:105886. https://doi.org/10.1016/j.neubiorev.2024.105886
Google Scholar
Harper DE, Schrepf A, Clauw DJ (2016) Pain mechanisms and centralized pain in temporomandibular disorders. J Dent Res 95:1102–1108. https://doi.org/10.1177/0022034516657070
Google Scholar
Kobayashi M, Nakaya Y (2020) Anatomical aspects of corticotrigeminal projections to the medullary dorsal Horn. J Oral Sci 62:144–146. https://doi.org/10.2334/josnusd.19-0386
Google Scholar
Choi I-S, Cho J-H, Jang I-S (2013) 5-Hydroxytryptamine 1A receptors inhibit glutamate release in rat medullary dorsal Horn neurons. NeuroReport 24:399–403. https://doi.org/10.1097/WNR.0b013e3283614cbf
Google Scholar
Choi I-S, Cho J-H, An C-H et al (2012) 5-HT(1B) receptors inhibit glutamate release from primary afferent terminals in rat medullary dorsal Horn neurons. Br J Pharmacol 167:356–367. https://doi.org/10.1111/j.1476-5381.2012.01964.x
Google Scholar
Suárez-Pereira I, Llorca-Torralba M, Bravo L et al (2022) The role of the locus coeruleus in pain and associated Stress-Related disorders. Biol Psychiatry 91:786–797. https://doi.org/10.1016/j.biopsych.2021.11.023
Google Scholar
Haleem DJ (2019) Targeting Serotonin1A receptors for treating chronic pain and depression. Curr Neuropharmacol 17:1098–1108. https://doi.org/10.2174/1570159X17666190811161807
Google Scholar
Cheng J (2018) Mechanisms of pathologic pain. In: Cheng J, Rosenquist RW (eds) Fundamentals of pain medicine. Springer International Publishing, Cham, pp 21–25
Google Scholar
Xie YF, Zhang S, Chiang CY et al (2007) Involvement of glia in central sensitization in trigeminal subnucleus caudalis (medullary dorsal horn). Brain Behav Immun 21:634–641. https://doi.org/10.1016/j.bbi.2006.07.008
Google Scholar
Kimura LF, Novaes LS, Picolo G et al (2022) How environmental enrichment balances out neuroinflammation in chronic pain and comorbid depression and anxiety disorders. Br J Pharmacol 179:1640–1660. https://doi.org/10.1111/bph.15584
Google Scholar
Liu F, Zhang Y-Y, Song N et al (2019) GABAB receptor activation attenuates inflammatory orofacial pain by modulating interleukin-1β in satellite glial cells: role of NF-κB and MAPK signaling pathways. Brain Res Bull 149:240–250. https://doi.org/10.1016/j.brainresbull.2019.04.018
Google Scholar
Modoux M, Rolhion N, Mani S, Sokol H (2021) Tryptophan metabolism as a Pharmacological target. Trends Pharmacol Sci 42:60–73. https://doi.org/10.1016/j.tips.2020.11.006
Google Scholar
Schwarcz R, Bruno JP, Muchowski PJ, Wu H-Q (2012) Kynurenines in the mammalian brain: when physiology Meets pathology. Nat Rev Neurosci 13:465–477. https://doi.org/10.1038/nrn3257
Google Scholar
Felger JC, Treadway MT (2017) Inflammation effects on motivation and motor activity: role of dopamine. Neuropsychopharmacol 42:216–241. https://doi.org/10.1038/npp.2016.143
Google Scholar
Sin R, Sotogaku N, Ohnishi YN et al (2023) Inhibition of STAT-mediated cytokine responses to chemically-induced colitis prevents inflammation-associated neurobehavioral impairments. Brain Behav Immun 114:173–186. https://doi.org/10.1016/j.bbi.2023.08.019
Google Scholar
Banks WA (2015) The Blood-brain barrier in neuroimmunology: Tales of separation and assimilation. Brain Behav Immun 0:1–8. https://doi.org/10.1016/j.bbi.2014.08.007
Google Scholar
Chen Y, Feng X, Cheung C-W, Liu JA (2022) Mode of action of astrocytes in pain: from the spinal cord to the brain. Prog Neurobiol 219:102365. https://doi.org/10.1016/j.pneurobio.2022.102365
Google Scholar
Shrivastava M, Battaglino R, Ye L (2021) A comprehensive review on biomarkers associated with painful temporomandibular disorders. Int J Oral Sci 13:23. https://doi.org/10.1038/s41368-021-00129-1
Google Scholar
de Sire A, Marotta N, Ferrillo M et al (2022) Oxygen-Ozone therapy for reducing Pro-Inflammatory cytokines serum levels in musculoskeletal and temporomandibular disorders: A comprehensive review. Int J Mol Sci 23:2528. https://doi.org/10.3390/ijms23052528
Google Scholar
Cui S-J, Fu Y, Liu Y et al (2019) Chronic inflammation deteriorates structure and function of collagen fibril in rat temporomandibular joint disc. Int J Oral Sci 11:2. https://doi.org/10.1038/s41368-018-0036-8
Google Scholar
Köhler CA, Freitas TH, Maes M et al (2017) Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiat Scand 135:373–387. https://doi.org/10.1111/acps.12698
Google Scholar
Kuring JK, Mathias JL, Ward L, Tachas G (2023) Inflammatory markers in persons with clinically-significant depression, anxiety or PTSD: A systematic review and meta-analysis. J Psychiatr Res 168:279–292. https://doi.org/10.1016/j.jpsychires.2023.10.009
Google Scholar
Jasim H, Ghafouri B, Gerdle B et al (2020) Altered levels of salivary and plasma pain related markers in temporomandibular disorders. J Headache Pain 21:105. https://doi.org/10.1186/s10194-020-01160-z
Google Scholar
Alhilou AM, Shimada A, Svensson CI et al (2021) Sex-related differences in response to masseteric injections of glutamate and nerve growth factor in healthy human participants. Sci Rep 11:13873. https://doi.org/10.1038/s41598-021-93171-2
Google Scholar
Chung M-K, Ro JY (2020) Peripheral glutamate receptor and transient receptor potential channel mechanisms of craniofacial muscle pain. Mol Pain 16:1744806920914204. https://doi.org/10.1177/1744806920914204
Google Scholar
Zunhammer M, Schweizer LM, Witte V et al (2016) Combined glutamate and glutamine levels in pain-processing brain regions are associated with individual pain sensitivity. Pain 157:2248. https://doi.org/10.1097/j.pain.0000000000000634
Google Scholar
Antonopoulos SR, Garten DA, Durham PL (2024) Dietary supplementation with grape seed extract from vitus vinifera prevents suppression of GABAergic protein expression in female Sprague Dawley trigeminal ganglion in a model of chronic temporomandibular joint disorder. Arch Oral Biol 165:106014. https://doi.org/10.1016/j.archoralbio.2024.106014
Google Scholar
Xue Y, Mo S, Li Y et al (2024) Dissecting neural circuits from rostral ventromedial medulla to spinal trigeminal nucleus bidirectionally modulating craniofacial mechanical sensitivity. Prog Neurobiol 232:102561. https://doi.org/10.1016/j.pneurobio.2023.102561
Google Scholar
Zhu X, Zhou W, Jin Y et al (2019) A central amygdala input to the parafascicular nucleus controls comorbid pain in depression. Cell Rep 29:3847–3858e5. https://doi.org/10.1016/j.celrep.2019.11.003
Google Scholar
Jin Y, Meng Q, Mei L et al (2020) A somatosensory cortex input to the caudal dorsolateral striatum controls comorbid anxiety in persistent pain. Pain 161:416–428. https://doi.org/10.1097/j.pain.0000000000001724
Google Scholar
Wang D, Pan X, Zhou Y et al (2023) Lateral septum-lateral hypothalamus circuit dysfunction in comorbid pain and anxiety. Mol Psychiatry 28:1090–1100. https://doi.org/10.1038/s41380-022-01922-y
Google Scholar
Meriney SD, Fanselow EE (2019) Chap. 17 – Monoamine Transmitters. In: Meriney SD, Fanselow EE (eds) Synaptic Transmission. Academic Press, pp 369–398
Boku S, Nakagawa S, Toda H, Hishimoto A (2018) Neural basis of major depressive disorder: beyond monoamine hypothesis. Psychiatry Clin Neurosci 72:3–12. https://doi.org/10.1111/pcn.12604
Google Scholar
Courtney NA, Ford CP (2016) Mechanisms of 5-HT1A receptor-mediated transmission in dorsal Raphe serotonin neurons. J Physiol 594:953–965. https://doi.org/10.1113/JP271716
Google Scholar
Zhang Q, Shao A, Jiang Z et al (2019) The exploration of mechanisms of comorbidity between migraine and depression. J Cell Mol Med 23:4505–4513. https://doi.org/10.1111/jcmm.14390
Google Scholar
Christidis N, Kang I, Cairns BE et al (2014) Expression of 5-HT3 receptors and TTX resistant sodium channels (NaV1.8) on muscle nerve fibers in pain-free humans and patients with chronic myofascial temporomandibular disorders. J Headache Pain 15:63. https://doi.org/10.1186/1129-2377-15-63
Google Scholar
Suto T, Eisenach JC, Hayashida K (2014) Peripheral nerve injury and Gabapentin, but not their combination, impair attentional behavior via direct effects on noradrenergic signaling in the brain. PAIN® 155:1935–1942. https://doi.org/10.1016/j.pain.2014.05.014
Google Scholar
Llorca-Torralba M, Camarena-Delgado C, Suárez-Pereira I et al (2021) Pain and depression comorbidity causes asymmetric plasticity in the locus coeruleus neurons. Brain 145:154–167. https://doi.org/10.1093/brain/awab239
Google Scholar
Haubrich J, Bernabo M, Nader K (2020) Noradrenergic projections from the locus coeruleus to the amygdala constrain fear memory reconsolidation. Elife 9:e57010. https://doi.org/10.7554/eLife.57010
Google Scholar
Giustino TF, Ramanathan KR, Totty MS et al (2020) Locus coeruleus norepinephrine drives Stress-Induced increases in basolateral amygdala firing and impairs extinction learning. J Neurosci 40:907–916. https://doi.org/10.1523/JNEUROSCI.1092-19.2019
Google Scholar
Dawson A, Stensson N, Ghafouri B et al (2016) Dopamine in plasma – a biomarker for myofascial TMD pain? J Headache Pain 17:65. https://doi.org/10.1186/s10194-016-0656-3
Google Scholar
Mitsi V, Zachariou V (2016) Modulation of pain, nociception, and analgesia by the brain reward center. Neuroscience 338:81–92. https://doi.org/10.1016/j.neuroscience.2016.05.017
Google Scholar
Taylor AMW, Becker S, Schweinhardt P, Cahill C (2016) Mesolimbic dopamine signaling in acute and chronic pain: implications for motivation, analgesia, and addiction. Pain 157:1194–1198. https://doi.org/10.1097/j.pain.0000000000000494
Google Scholar
Grace AA (2016) Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci 17:524–532. https://doi.org/10.1038/nrn.2016.57
Google Scholar
Wang C, Kavalali E, Monteggia L (2022) BDNF signaling in context: from synaptic regulation to psychiatric disorders. Cell 185:62–76. https://doi.org/10.1016/j.cell.2021.12.003
Google Scholar
Merighi A (2024) Brain-derived neurotrophic factor, nociception, and pain. Biomolecules 14:539. https://doi.org/10.3390/biom14050539
Google Scholar
Wang H, Wei Y, Pu Y et al (2019) Brain-derived neurotrophic factor stimulation of T-type Ca2 + channels in sensory neurons contributes to increased peripheral pain sensitivity. Sci Signal 12:eaaw2300. https://doi.org/10.1126/scisignal.aaw2300
Google Scholar
Liu D, Tang Q-Q, Yin C et al (2018) BDNF-mediated projection-specific regulation of depressive-like and nociceptive behaviors in mesolimbic reward circuitry. Pain 159:175. https://doi.org/10.1097/j.pain.0000000000001083
Google Scholar
Kim H, Kim H, Suh HJ, Choi H-S (2024) Lactobacillus brevis-Fermented Gamma-Aminobutyric acid ameliorates Depression- and Anxiety-Like behaviors by activating the Brain-Derived neurotrophic Factor-Tropomyosin receptor kinase B signaling pathway in BALB/C mice. J Agric Food Chem 72:2977–2988. https://doi.org/10.1021/acs.jafc.3c07260
Google Scholar
Chen Z, Tang Z, Zou K et al (2021) D-Serine produces antidepressant-like effects in mice through suppression of BDNF signaling pathway and regulation of synaptic adaptations in the nucleus accumbens. Mol Med 27:127. https://doi.org/10.1186/s10020-021-00389-x
Google Scholar
Durham PL, Masterson CG (2013) Two mechanisms involved in trigeminal CGRP release: implications for migraine treatment. Headache 53:67–80. https://doi.org/10.1111/j.1526-4610.2012.02262.x
Google Scholar
Suttle A, Wang P, Dias FC et al (2023) Sensory Neuron-TRPV4 modulates temporomandibular disorder pain via CGRP in mice. J Pain 24:782–795. https://doi.org/10.1016/j.jpain.2022.12.001
Google Scholar
Gungor NZ, Pare D (2014) CGRP inhibits neurons of the bed nucleus of the stria terminalis: implications for the regulation of fear and anxiety. J Neurosci 34:60–65. https://doi.org/10.1523/JNEUROSCI.3473-13.2014
Google Scholar
Humes C, Sic A, Knezevic NN (2024) Substance P’s impact on chronic pain and psychiatric Conditions-A narrative review. Int J Mol Sci 25:5905. https://doi.org/10.3390/ijms25115905
Google Scholar
Shu H, Liu S, Crawford J, Tao F (2023) A female-specific role for trigeminal dynorphin in orofacial pain comorbidity. Pain 164:2801. https://doi.org/10.1097/j.pain.0000000000002980
Google Scholar
Feldreich A, Ernberg M, Rosén A (2017) Reduction in maximum pain after surgery in temporomandibular joint patients is associated with decreased beta-endorphin levels – a pilot study. Int J Oral Maxillofac Surg 46:97–103. https://doi.org/10.1016/j.ijom.2016.08.010
Google Scholar
Wong S, Le GH, Vasudeva S et al (2024) Preclinical and clinical efficacy of kappa opioid receptor antagonists for depression: A systematic review. J Affect Disord 362:816–827. https://doi.org/10.1016/j.jad.2024.07.030
Google Scholar
Brandl F, Weise B, Mulej Bratec S et al (2022) Common and specific large-scale brain changes in major depressive disorder, anxiety disorders, and chronic pain: a transdiagnostic multimodal meta-analysis of structural and functional MRI studies. Neuropsychopharmacol 47:1071–1080. https://doi.org/10.1038/s41386-022-01271-y
Google Scholar
Yin Y, He S, Xu J et al (2020) The neuro-pathophysiology of temporomandibular disorders-related pain: a systematic review of structural and functional MRI studies. J Headache Pain 21:78. https://doi.org/10.1186/s10194-020-01131-4
Google Scholar
Clements CC, Ascunce K, Nelson CA (2023) In context: A developmental model of reward processing, with implications for autism and sensitive periods. J Am Acad Child Adolesc Psychiatry 62. https://doi.org/10.1016/j.jaac.2022.07.861
Bamford NS, Wightman RM, Sulzer D (2018) Dopamine’s effects on corticostriatal synapses during reward-based behaviors. Neuron 97:494–510. https://doi.org/10.1016/j.neuron.2018.01.006
Google Scholar
Yang S, Boudier-Revéret M, Choo YJ, Chang MC (2020) Association between chronic pain and alterations in the mesolimbic dopaminergic system. Brain Sci 10:701. https://doi.org/10.3390/brainsci10100701
Google Scholar
Nees F, Becker S, Millenet S et al (2017) Brain substrates of reward processing and the µ-opioid receptor: a pathway into pain? Pain 158:212. https://doi.org/10.1097/j.pain.0000000000000720
Google Scholar
Yin Y, He S, He N et al (2024) Brain alterations in sensorimotor and emotional regions associated with temporomandibular disorders. Oral Dis 30:1367–1378. https://doi.org/10.1111/odi.14466
Google Scholar
Chen X-F, He P, Xu K-H et al (2022) Disrupted spontaneous neural activity and its interaction with pain and emotion in temporomandibular disorders. Front NeuroSci 16
Liu N, Sun H, Yang C et al (2024) The difference in volumetric alternations of the orbitofrontal-limbic-striatal system between major depressive disorder and anxiety disorders: A systematic review and voxel-based meta-analysis. J Affect Disord 350:65–77. https://doi.org/10.1016/j.jad.2024.01.043
Google Scholar
Ding Y-D, Chen X, Chen Z-B et al (2022) Reduced nucleus accumbens functional connectivity in reward network and default mode network in patients with recurrent major depressive disorder. Transl Psychiatry 12:236. https://doi.org/10.1038/s41398-022-01995-x
Google Scholar
Bore MC, Liu X, Huang X et al (2024) Common and separable neural alterations in adult and adolescent depression – Evidence from neuroimaging meta-analyses. Neurosci Biobehavioral Reviews 164:105835. https://doi.org/10.1016/j.neubiorev.2024.105835
Google Scholar
Zhou Z, Gao Y, Bao W et al (2024) Distinctive intrinsic functional connectivity alterations of anterior cingulate cortex subdivisions in major depressive disorder: A systematic review and meta-analysis. Neurosci Biobehav Rev 159:105583. https://doi.org/10.1016/j.neubiorev.2024.105583
Google Scholar
Menon V (2011) Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci 15:483–506. https://doi.org/10.1016/j.tics.2011.08.003
Google Scholar
Schimmelpfennig J, Topczewski J, Zajkowski W, Jankowiak-Siuda K (2023) The role of the salience network in cognitive and affective deficits. Front Hum Neurosci 17:1133367. https://doi.org/10.3389/fnhum.2023.1133367
Google Scholar
Massullo C, Carbone GA, Farina B et al (2020) Dysregulated brain salience within a triple network model in high trait anxiety individuals: A pilot EEG functional connectivity study. Int J Psychophysiol 157:61–69. https://doi.org/10.1016/j.ijpsycho.2020.09.002
Google Scholar
Hamilton JP, Chen MC, Gotlib IH (2013) Neural systems approaches to Understanding major depressive disorder: an intrinsic functional organization perspective. Neurobiol Dis. 52 C:4
Google Scholar
Ayoub LJ, Seminowicz DA, Moayedi M (2018) A meta-analytic study of experimental and chronic orofacial pain excluding headache disorders. Neuroimage Clin 20:901–912. https://doi.org/10.1016/j.nicl.2018.09.018
Google Scholar
Brandl F, Le Houcq Corbi Z, Mulej Bratec S, Sorg C (2019) Cognitive reward control recruits medial and lateral frontal cortices, which are also involved in cognitive emotion regulation: A coordinate-based meta-analysis of fMRI studies. NeuroImage 200:659–673. https://doi.org/10.1016/j.neuroimage.2019.07.008
Google Scholar
Collins KA, Mendelsohn A, Cain CK, Schiller D (2014) Taking action in the face of threat: neural synchronization predicts adaptive coping. J Neurosci 34:14733–14738. https://doi.org/10.1523/JNEUROSCI.2152-14.2014
Google Scholar
Dammann J, Klepzig K, Schenkenberger E et al (2020) Association of decrease in Insula fMRI activation with changes in trait anxiety in patients with craniomandibular disorder (CMD). Behav Brain Res 379:112327. https://doi.org/10.1016/j.bbr.2019.112327
Google Scholar
Harfeldt K, Alexander L, Lam J et al (2018) Spectroscopic differences in posterior Insula in patients with chronic temporomandibular pain. Scandinavian J Pain 18:351–361. https://doi.org/10.1515/sjpain-2017-0159
Google Scholar
Menon V (2023) 20 Years of the default mode network: a review and synthesis. Neuron 111:2469–2487. https://doi.org/10.1016/j.neuron.2023.04.023
Google Scholar
Ronde M, van der Zee EA, Kas MJH (2024) Default mode network dynamics: an integrated neurocircuitry perspective on social dysfunction in human brain disorders. Neurosci Biobehavioral Reviews 164:105839. https://doi.org/10.1016/j.neubiorev.2024.105839
Google Scholar
Alshelh Z, Marciszewski KK, Akhter R et al (2018) Disruption of default mode network dynamics in acute and chronic pain States. Neuroimage Clin 17:222–231. https://doi.org/10.1016/j.nicl.2017.10.019
Google Scholar
Kucyi A, Moayedi M, Weissman-Fogel I et al (2014) Enhanced medial Prefrontal-Default mode network functional connectivity in chronic pain and its association with pain rumination. J Neurosci 34:3969–3975. https://doi.org/10.1523/JNEUROSCI.5055-13.2014
Google Scholar
Marchetti I, Koster EHW, Sonuga-Barke EJ, De Raedt R (2012) The default mode network and recurrent depression: A Neurobiological model of cognitive risk factors. Neuropsychol Rev 22:229–251. https://doi.org/10.1007/s11065-012-9199-9
Google Scholar
Briley P, Webster L, Boutry C et al (2022) Resting-state functional connectivity correlates of anxiety co-morbidity in major depressive disorder. Neurosci Biobehavioral Reviews 138:104701. https://doi.org/10.1016/j.neubiorev.2022.104701
Google Scholar
Moayedi M, Weissman-Fogel I, Crawley AP et al (2011) Contribution of chronic pain and neuroticism to abnormal forebrain Gray matter in patients with temporomandibular disorder. NeuroImage 55:277–286. https://doi.org/10.1016/j.neuroimage.2010.12.013
Google Scholar
Moayedi M, Weissman-Fogel I, Salomons TV et al (2012) Abnormal Gray matter aging in chronic pain patients. Brain Res 1456:82–93. https://doi.org/10.1016/j.brainres.2012.03.040
Google Scholar
Picó-Pérez M, Radua J, Steward T et al (2017) Emotion regulation in mood and anxiety disorders: A meta-analysis of fMRI cognitive reappraisal studies. Prog Neuropsychopharmacol Biol Psychiatry 79:96–104. https://doi.org/10.1016/j.pnpbp.2017.06.001
Google Scholar
Xu J, Van Dam NT, Feng C et al (2019) Anxious brain networks: A coordinate-based activation likelihood Estimation meta-analysis of resting-state functional connectivity studies in anxiety. Neurosci Biobehav Rev 96:21–30. https://doi.org/10.1016/j.neubiorev.2018.11.005
Google Scholar
Lin J, Cao D-Y (2024) Associations between temporomandibular disorders and brain Imaging-Derived phenotypes. Int Dent J 74:784–793. https://doi.org/10.1016/j.identj.2024.01.008
Google Scholar
Huang D, Wu Y, Yue J, Wang X (2024) Causal relationship between resting-state networks and depression: a bidirectional two-sample Mendelian randomization study. BMC Psychiatry 24:402. https://doi.org/10.1186/s12888-024-05857-2
Google Scholar
Zanoaga M-D, Friligkou E, He J et al (2024) Brainwide Mendelian randomization study of anxiety disorders and symptoms. Biol Psychiatry 95:810–817. https://doi.org/10.1016/j.biopsych.2023.11.006
Google Scholar
Rodhen RM, de Holanda TA, Barbon FJ et al (2022) Invasive surgical procedures for the management of internal derangement of the temporomandibular joint: a systematic review and meta-analysis regarding the effects on pain and jaw mobility. Clin Oral Investig 26:3429–3446. https://doi.org/10.1007/s00784-022-04428-7
Google Scholar
Busse JW, Casassus R, Carrasco-Labra A et al (2023) Management of chronic pain associated with temporomandibular disorders: a clinical practice guideline. BMJ 383:e076227. https://doi.org/10.1136/bmj-2023-076227
Google Scholar
Ohrbach R, Dworkin SF (1998) Five-year outcomes in TMD: relationship of changes in pain to changes in physical and psychological variables. Pain 74:315–326. https://doi.org/10.1016/s0304-3959(97)00194-2
Google Scholar
Armijo-Olivo S, Pitance L, Singh V et al (2016) Effectiveness of manual therapy and therapeutic exercise for temporomandibular disorders: systematic review and Meta-Analysis. Phys Ther 96:9–25. https://doi.org/10.2522/ptj.20140548
Google Scholar
Al-Moraissi EA, Conti PCR, Alyahya A et al (2022) The hierarchy of different treatments for myogenous temporomandibular disorders: a systematic review and network meta-analysis of randomized clinical trials. Oral Maxillofac Surg 26:519–533. https://doi.org/10.1007/s10006-021-01009-y
Google Scholar
Alkhutari AS, Alyahya A, Rodrigues Conti PC et al (2021) Is the therapeutic effect of occlusal stabilization appliances more than just placebo effect in the management of painful temporomandibular disorders? A network meta-analysis of randomized clinical trials. J Prosthet Dent 126:24–32. https://doi.org/10.1016/j.prosdent.2020.08.015
Google Scholar
Al-Moraissi EA, Goddard G, Christidis N (2023) Are acupuncture and dry needling effective in the management of masticatory muscle pain: A network meta-analysis of randomised clinical trials. J Oral Rehabil 50:87–97. https://doi.org/10.1111/joor.13382
Google Scholar
Al-Moraissi EA, Alradom J, Aladashi O et al (2020) Needling therapies in the management of myofascial pain of the masticatory muscles: A network meta-analysis of randomised clinical trials. J Oral Rehabil 47:910–922. https://doi.org/10.1111/joor.12960
Google Scholar
Driscoll MA, Edwards RR, Becker WC et al (2021) Psychological interventions for the treatment of chronic pain in adults. Psychol Sci Public Interest 22:52–95. https://doi.org/10.1177/15291006211008157
Google Scholar
Yoshino A, Okamoto Y, Okada G et al (2018) Changes in resting-state brain networks after cognitive-behavioral therapy for chronic pain. Psychol Med 48:1148–1156. https://doi.org/10.1017/S0033291717002598
Google Scholar
Bao S, Qiao M, Lu Y, Jiang Y (2022) Neuroimaging mechanism of cognitive behavioral therapy in pain management. Pain Res Manag 2022:6266619. https://doi.org/10.1155/2022/6266619
Google Scholar
Hwangbo N-K, Woo K-C, Kim S-T (2023) Evaluation of clinical symptoms improvement by cognitive behavioral therapy using a smartphone application in patients with temporomandibular disorder. Health Care (Don Mills) 11:1443. https://doi.org/10.3390/healthcare11101443
Google Scholar
Penlington C, Bowes C, Taylor G et al (2022) Psychological therapies for temporomandibular disorders (TMDs). Cochrane Database Syst Rev 8:CD013515. https://doi.org/10.1002/14651858.CD013515.pub2
Google Scholar
Zhang Q, Zhang J, Ran W et al (2020) Effectiveness of cognitive behavioral therapy on kinesiophobia and oral health-related quality of life in patients with temporomandibular disorders, study protocol for a randomized controlled trial. Med (Baltim) 99:e23295. https://doi.org/10.1097/MD.0000000000023295
Google Scholar
Brewer JA, Garrison KA (2014) The posterior cingulate cortex as a plausible mechanistic target of meditation: findings from neuroimaging. Ann Ny Acad Sci 1307:19–27. https://doi.org/10.1111/nyas.12246
Google Scholar
Pal A, Mukhopadhyay P, Biswas R, Bhattacharya D (2023) Mindfulness influences the psycho-social dimension of chronic pain: A randomized controlled clinical trial in Indian context. Indian J Psychiatry 65:1061–1068. https://doi.org/10.4103/indianjpsychiatry.indianjpsychiatry_393_23
Google Scholar
Veehof MM, Trompetter HR, Bohlmeijer ET, Schreurs KMG (2016) Acceptance- and mindfulness-based interventions for the treatment of chronic pain: a meta-analytic review. Cogn Behav Ther 45:5–31. https://doi.org/10.1080/16506073.2015.1098724
Google Scholar
Salazar-Méndez J, Núñez-Cortés R, Suso-Martí L et al (2023) Dosage matters: Uncovering the optimal duration of pain neuroscience education to improve psychosocial variables in chronic musculoskeletal pain. A systematic review and meta-analysis with moderator analysis. Neurosci Biobehavioral Reviews 153:105328. https://doi.org/10.1016/j.neubiorev.2023.105328
Google Scholar
Christidis N, Al-Moraissi EA, Al-Ak’hali MS et al (2024) Psychological treatments for temporomandibular disorder pain-A systematic review. J Oral Rehabil 51:1320–1336. https://doi.org/10.1111/joor.13693
Google Scholar
Christidis N, Al-Moraissi E, Barjandi G et al (2024) Pharmacological treatments of temporomandibular disorders: A systematic review including a network Meta-Analysis. DRUGS 84:59–81. https://doi.org/10.1007/s40265-023-01971-9
Google Scholar
Bonilla-Jaime H, Sánchez-Salcedo JA, Estevez-Cabrera MM et al (2022) Depression and pain: use of antidepressants. Curr Neuropharmacol 20:384–402. https://doi.org/10.2174/1570159X19666210609161447
Google Scholar
Barakat A, Hamdy MM, Elbadr MM (2018) Uses of Fluoxetine in nociceptive pain management: A literature overview. Eur J Pharmacol 829:12–25. https://doi.org/10.1016/j.ejphar.2018.03.042
Google Scholar
Birkinshaw H, Friedrich C, Cole P et al (2021) Antidepressants for pain management in adults with chronic pain: a network meta-analysis. Cochrane Database Syst Rev 2021:CD014682. https://doi.org/10.1002/14651858.CD014682
Google Scholar
Kofod J, Elfving B, Nielsen EH et al (2022) Depression and inflammation: correlation between changes in inflammatory markers with antidepressant response and long-term prognosis. Eur Neuropsychopharmacol 54:116–125. https://doi.org/10.1016/j.euroneuro.2021.09.006
Google Scholar
Giggins OM, Persson UM, Caulfield B (2013) Biofeedback in rehabilitation. J Neuroeng Rehabil 10:60. https://doi.org/10.1186/1743-0003-10-60
Google Scholar
Bergmann A, Edelhoff D, Schubert O et al (2020) Effect of treatment with a full-occlusion biofeedback splint on sleep Bruxism and TMD pain: a randomized controlled clinical trial. Clin Oral Investig 24:4005–4018. https://doi.org/10.1007/s00784-020-03270-z
Google Scholar
Dillon A, Kelly M, Robertson IH, Robertson DA (2016) Smartphone applications utilizing biofeedback can aid stress reduction. Front Psychol 7:832. https://doi.org/10.3389/fpsyg.2016.00832
Google Scholar
Liao H-Y, Satyanarayanan SK, Lin Y-W, Su K-P (2023) Clinical efficacy and immune effects of acupuncture in patients with comorbid chronic pain and major depression disorder: A double-blinded, randomized controlled crossover study. Brain Behav Immun 110:339–347. https://doi.org/10.1016/j.bbi.2023.03.016
Google Scholar
Alessandri-Bonetti A, Lobbezoo F, Mangino G et al (2024) Obstructive sleep apnea treatment improves temporomandibular disorder pain. Sleep Breath 28:203–209. https://doi.org/10.1007/s11325-023-02883-4
Google Scholar
Scott AJ, Webb TL, Martyn-St James M et al (2021) Improving sleep quality leads to better mental health: A meta-analysis of randomised controlled trials. Sleep Med Rev 60:101556. https://doi.org/10.1016/j.smrv.2021.101556
Google Scholar
Greene CS, Manfredini D (2020) Treating temporomandibular disorders in the 21st century: can we finally eliminate the third pathway? J Oral Facial Pain Headache 34:206–216. https://doi.org/10.11607/ofph.2608
Google Scholar
Greene CS, Manfredini D (2021) Transitioning to chronic temporomandibular disorder pain: a combination of patient vulnerabilities and iatrogenesis. J Oral Rehabil 48:1077–1088. https://doi.org/10.1111/joor.13180
Google Scholar
Manfredini D, Bender S (2024) The professional burden of protecting TMD patients. Cranio 42:639–640. https://doi.org/10.1080/08869634.2024.2375194
Google Scholar
link