Temporomandibular disorders and mental health: shared etiologies and treatment approaches | The Journal of Headache and Pain

0
Temporomandibular disorders and mental health: shared etiologies and treatment approaches | The Journal of Headache and Pain
  • Tran C, Ghahreman K, Huppa C, Gallagher JE (2022) Management of temporomandibular disorders: a rapid review of systematic reviews and guidelines. Int J Oral Max Surg 51:1211–1225. https://doi.org/10.1016/j.ijom.2021.11.009

    Article 
    CAS 

    Google Scholar 

  • Prevalence of TMJD and its Signs and Symptoms| National Institute of Dental and Craniofacial Research Accessed 20 Mar 2024

  • Maini K, Dua A (2024) Temporomandibular syndrome. In: StatPearls. StatPearls Publishing, Treasure Island (FL)

    Google Scholar 

  • Manfredini D, Häggman-Henrikson B, Al Jaghsi A et al (2025) Temporomandibular disorders: INfORM/IADR key points for good clinical practice based on standard of care. Cranio® 43:1–5. https://doi.org/10.1080/08869634.2024.2405298

    Article 
    PubMed 

    Google Scholar 

  • Schiffman E, Ohrbach R, Truelove E et al (2014) Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: recommendations of the international RDC/TMD consortium network** and orofacial pain special interest group†. J Oral Facial Pain H 28:6–27. https://doi.org/10.11607/jop.1151

    Article 

    Google Scholar 

  • Barjandi G, Kosek E, Hedenberg-Magnusson B et al (2021) Comorbid conditions in temporomandibular disorders myalgia and myofascial pain compared to fibromyalgia. J Clin Med 10:3138. https://doi.org/10.3390/jcm10143138

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Samim F, Epstein JB (2019) Orofacial neuralgia following whiplash-associated trauma: case reports and literature review. SN Compr Clin Med 1:627–632. https://doi.org/10.1007/s42399-019-00095-0

    Article 

    Google Scholar 

  • Manfredini D, Favero L, Gregorini G et al (2013) Natural course of temporomandibular disorders with low pain-related impairment: a 2-to-3-year follow-up study. J Oral Rehabil 40:436–442. https://doi.org/10.1111/joor.12047

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Suvinen TI, Kemppainen P, Le Bell Y et al (2013) Research diagnostic criteria axis II in screening and as a part of biopsychosocial subtyping of Finnish patients with temporomandibular disorder pain. J Orofac Pain 27:314–324. https://doi.org/10.11607/jop.1145

    Article 
    PubMed 

    Google Scholar 

  • Hietaharju M, Näpänkangas R, Sipilä K et al (2021) Importance of the graded chronic pain scale as a biopsychosocial screening instrument in TMD pain patient subtyping. J Oral Facial Pain Headache 35:303–316. https://doi.org/10.11607/ofph.2983

    Article 
    PubMed 

    Google Scholar 

  • Kyu HH, Abate D, Abate KH et al (2018) Global, regional, and National disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet 392:1859–1922. https://doi.org/10.1016/S0140-6736(18)32335-3

    Article 

    Google Scholar 

  • Yao C, Zhang Y, Lu P et al (2023) Exploring the bidirectional relationship between pain and mental disorders: a comprehensive Mendelian randomization study. J Headache Pain 24:82. https://doi.org/10.1186/s10194-023-01612-2

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De La Torre Canales G, Câmara-Souza MB, Muñoz Lora VRM et al (2018) Prevalence of psychosocial impairment in temporomandibular disorder patients: A systematic review. J Oral Rehabil 45:881–889. https://doi.org/10.1111/joor.12685

    Article 
    PubMed 

    Google Scholar 

  • Manfredini D, Ahlberg J, Winocur E et al (2011) Correlation of RDC/TMD axis I diagnoses and axis II pain-related disability. A multicenter study. Clin Oral Investig 15:749–756. https://doi.org/10.1007/s00784-010-0444-4

    Article 
    PubMed 

    Google Scholar 

  • De la Torre Canales G, Bonjardim LR, Poluha RL et al (2020) Correlation between physical and psychosocial findings in a population of temporomandibular disorder patients. Int J Prosthodont 33:155–159. https://doi.org/10.11607/ijp.5847

    Article 
    PubMed 

    Google Scholar 

  • Durham J, Breckons M, Vale L, Shen J (2023) DEEP study: modeling outcomes and costs of persistent orofacial pain. JDR Clin Translational Res 8:16–26. https://doi.org/10.1177/23800844211063870

    Article 

    Google Scholar 

  • Yap AU, Lee DZR (2023) Painful temporomandibular disorders in Confucian-heritage cultures: their inter-relationship with bodily pain, psychological well-being and distress. J Oral Rehabil 50:948–957. https://doi.org/10.1111/joor.13522

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Omezli MM, Torul D, Varer Akpinar C (2023) Temporomandibular disorder severity and its association with psychosocial and sociodemographic factors in Turkish adults. BMC Oral Health 23:34. https://doi.org/10.1186/s12903-023-02737-1

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sousa CRA, Arsati YB, de Velly OL AM, et al (2023) Catastrophizing is associated with pain-related disability in temporomandibular disorders. Braz Oral Res 37:e070. https://doi.org/10.1590/1807-3107bor-2023.vol37.0070

    Article 
    PubMed 

    Google Scholar 

  • Sánchez-Valle J, Valencia A (2023) Molecular bases of comorbidities: present and future perspectives. Trends Genet 39:773–786. https://doi.org/10.1016/j.tig.2023.06.003

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kant T, Koyama E, Zai CC et al (2022) COMT Val/Met and psychopathic traits in children and adolescents: A systematic review and new evidence of a developmental trajectory toward psychopathy. Int J Mol Sci 23:1782. https://doi.org/10.3390/ijms23031782

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Vetterlein A, Monzel M, Reuter M (2023) Are catechol-O-methyltransferase gene polymorphisms genetic markers for pain sensitivity after all? – A review and meta-analysis. Neurosci Biobehav Rev 148:105112. https://doi.org/10.1016/j.neubiorev.2023.105112

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Yang M, Baser RE, Khanin R et al (2023) COMT Val158Met affects the analgesic response to acupuncture among Cancer survivors with chronic pain. J Pain 24:1721–1730. https://doi.org/10.1016/j.jpain.2023.05.005

    Article 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zhang X, Kanter K, Chen J et al (2020) Low catechol-O-methyltransferase and stress potentiate functional pain and depressive behavior, especially in female mice. Pain 161:446–458. https://doi.org/10.1097/j.pain.0000000000001734

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Slade GD, Sanders AE, Ohrbach R et al (2015) COMT diplotype amplifies effect of stress on risk of temporomandibular pain. J Dent Res 94:1187–1195. https://doi.org/10.1177/0022034515595043

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Smith SB, Mir E, Bair E et al (2013) Genetic variants associated with development of TMD and its intermediate phenotypes: the genetic architecture of TMD in the OPPERA prospective cohort study. J Pain 14. https://doi.org/10.1016/j.jpain.2013.09.004

  • Rizvi SJ, Gandhi W, Salomons T (2021) Reward processing as a common diathesis for chronic pain and depression. Neurosci Biobehavioral Reviews 127:749–760. https://doi.org/10.1016/j.neubiorev.2021.04.033

    Article 

    Google Scholar 

  • Cormier S, Lavigne GL, Choinière M, Rainville P (2016) Expectations predict chronic pain treatment outcomes. Pain 157:329. https://doi.org/10.1097/j.pain.0000000000000379

    Article 
    PubMed 

    Google Scholar 

  • Liu Q, Ely BA, Schwartz JJ et al (2021) Reward function as an outcome predictor in youth with mood and anxiety symptoms. J Affect Disorders 278:433–442. https://doi.org/10.1016/j.jad.2020.09.074

    Article 
    PubMed 

    Google Scholar 

  • Cormier S, Lévesque-Lacasse A (2021) Biopsychosocial characteristics of patients with chronic pain expecting different levels of pain relief in the context of multidisciplinary treatments. Clin J Pain 37:11. https://doi.org/10.1097/AJP.0000000000000885

    Article 
    PubMed 

    Google Scholar 

  • Vrieze E, Demyttenaere K, Bruffaerts R et al (2014) Dimensions in major depressive disorder and their relevance for treatment outcome. J Affect Disord 155:35–41. https://doi.org/10.1016/j.jad.2013.10.020

    Article 
    PubMed 

    Google Scholar 

  • Everaert J, Koster EHW, Derakshan N (2012) The combined cognitive bias hypothesis in depression. Clin Psychol Rev 32:413–424. https://doi.org/10.1016/j.cpr.2012.04.003

    Article 
    PubMed 

    Google Scholar 

  • Ohrbach R, Michelotti A (2015) Psychological considerations. In: Kandasamy S, Greene CS, Rinchuse DJ, Stockstill JW (eds) TMD and orthodontics: A clinical guide for the orthodontist. Springer International Publishing, Cham, pp 49–61

    Chapter 

    Google Scholar 

  • Jc MR C, I C (2021) The intensity of awake Bruxism episodes is increased in individuals with high trait anxiety. Clin Oral Invest 25. https://doi.org/10.1007/s00784-020-03650-5

  • Sadeghlo N, Selvanathan J, Koshkebaghi D, Cioffi I (2024) Aberrant occlusal sensitivity in adults with increased somatosensory amplification: a case-control study. Clin Oral Investig 28:250. https://doi.org/10.1007/s00784-024-05628-z

    Article 
    PubMed 

    Google Scholar 

  • Chow JC, Cioffi I (2019) Effects of trait anxiety, somatosensory amplification, and facial pain on self-reported oral behaviors. Clin Oral Invest 23:1653–1661. https://doi.org/10.1007/s00784-018-2600-1

    Article 

    Google Scholar 

  • Bucci R, Koutris M, Palla S et al (2020) Occlusal tactile acuity in temporomandibular disorder pain patients: a case-control study. J Oral Rehabil 47:923–929. https://doi.org/10.1111/joor.12996

    Article 
    PubMed 

    Google Scholar 

  • Campbell CM, Edwards RR (2009) Mind-body interactions in pain: the neurophysiology of anxious and catastrophic pain-related thoughts. Transl Res 153:97–101. https://doi.org/10.1016/j.trsl.2008.12.002

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Craner JR, Gilliam WP, Sperry JA (2016) Rumination, magnification, and helplessness: how do different aspects of pain catastrophizing relate to pain severity and functioning?? Clin J Pain 32:1028–1035. https://doi.org/10.1097/AJP.0000000000000355

    Article 
    PubMed 

    Google Scholar 

  • Zhang F, Baranova A, Zhou C et al (2021) Causal influences of neuroticism on mental health and cardiovascular disease. Hum Genet 140:1267–1281. https://doi.org/10.1007/s00439-021-02288-x

    Article 
    PubMed 

    Google Scholar 

  • Mitrowska-Guźmińska M, Gębska M, Jonko K et al (2022) Effect of personality type on the occurrence of temporomandibular Disorders—A Cross-Sectional study. Int J Environ Res Public Health 20:352. https://doi.org/10.3390/ijerph20010352

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Assiri K (2024) Relationships between personality factors and DC/TMD axis II scores of psychosocial impairment among patients with pain related temporomandibular disorders. Sci Rep 14:26869. https://doi.org/10.1038/s41598-024-78216-6

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Almutairi AF, Albesher N, Aljohani M et al (2021) Association of oral parafunctional habits with anxiety and the Big-Five personality traits in the Saudi adult population. Saudi Dent J 33:90–98. https://doi.org/10.1016/j.sdentj.2020.01.003

    Article 
    PubMed 

    Google Scholar 

  • Sanders AE, Akinkugbe AA, Bair E et al (2016) Subjective sleep quality deteriorates before development of painful temporomandibular disorder. J Pain 17:669–677. https://doi.org/10.1016/j.jpain.2016.02.004

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hertenstein E, Feige B, Gmeiner T et al (2019) Insomnia as a predictor of mental disorders: a systematic review and meta-analysis. Sleep Med Rev 43:96–105. https://doi.org/10.1016/j.smrv.2018.10.006

    Article 
    PubMed 

    Google Scholar 

  • Karimi R, Mallah N, Scherer R et al (2023) Sleep quality as a mediator of the relation between depression and chronic pain: a systematic review and meta-analysis. Br J Anaesth 130:747–762. https://doi.org/10.1016/j.bja.2023.02.036

    Article 
    PubMed 

    Google Scholar 

  • Yang Y, Xu L, Liu S et al (2024) Analysis of risk factors and interactions for pain in temporomandibular disorder: A cross-sectional study. J Rehabil 51:1113–1122. https://doi.org/10.1111/joor.13682

    Article 
    CAS 

    Google Scholar 

  • Xiang Y, Song J, Liang Y et al (2023) Causal relationship between psychiatric traits and temporomandibular disorders: a bidirectional two-sample Mendelian randomization study. Clin Oral Investig 27:7513–7521. https://doi.org/10.1007/s00784-023-05339-x

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Que H, Zhang Q, Xu S et al (2024) Bi-directional two-sample Mendelian randomization identifies causal association of depression with temporomandibular disorders. J Rehabil 51:1653–1661. https://doi.org/10.1111/joor.13771

    Article 

    Google Scholar 

  • Liao C-H, Chang C-S, Chang S-N et al (2011) The risk of temporomandibular disorder in patients with depression: a population-based cohort study. Commun Dent Oral Epidemiol 39:525–531. https://doi.org/10.1111/j.1600-0528.2011.00621.x

    Article 

    Google Scholar 

  • Slade GD, Ohrbach R, Greenspan JD et al (2016) Painful temporomandibular disorder: decade of discovery from OPPERA studies. J Dent Res 95:1084–1092. https://doi.org/10.1177/0022034516653743

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Fillingim RB, Ohrbach R, Greenspan JD et al (2013) Psychological factors associated with development of TMD: the OPPERA prospective cohort study. J Pain 14:T75–90. https://doi.org/10.1016/j.jpain.2013.06.009

    Article 
    PubMed 

    Google Scholar 

  • Xiao F, Hu A, Meng B et al (2023) PVH-Peri5 pathway for Stress-Coping oromotor and anxious behaviors in mice. J Dent Res 102:227–237. https://doi.org/10.1177/00220345221130305

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Xu L, Cai B, Fan S et al (2021) Association of oral behaviors with anxiety, depression, and jaw function in patients with temporomandibular disorders in China: A Cross-Sectional study. Med Sci Monit 27:e929985–e929981. e929985-7

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Svensson P, Jadidi F, Arima T et al (2008) Relationships between craniofacial pain and Bruxism. J Oral Rehabil 35:524–547. https://doi.org/10.1111/j.1365-2842.2008.01852.x

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sinclair A, Wieckiewicz M, Ettlin D et al (2022) Temporomandibular disorders in patients with polysomnographic diagnosis of sleep Bruxism: a case–control study. Sleep Breath 26:941–948. https://doi.org/10.1007/s11325-021-02449-2

    Article 
    PubMed 

    Google Scholar 

  • Garland EL, Trøstheim M, Eikemo M et al (2020) Anhedonia in chronic pain and prescription opioid misuse. Psychol Med 50:1977–1988. https://doi.org/10.1017/S0033291719002010

    Article 
    PubMed 

    Google Scholar 

  • Mercer Lindsay N, Chen C, Gilam G et al (2021) Brain circuits for pain and its treatment. Sci Transl Med 13:eabj7360. https://doi.org/10.1126/scitranslmed.abj7360

    Article 
    PubMed 

    Google Scholar 

  • Sessle BJ (2011) Peripheral and central mechanisms of orofacial inflammatory pain. Int Rev Neurobiol 97:179–206. https://doi.org/10.1016/B978-0-12-385198-7.00007-2

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Steinhoff MS, von Mentzer B, Geppetti P et al (2014) Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev 94:265–301. https://doi.org/10.1152/physrev.00031.2013

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Fan W, Zhu X, He Y et al (2019) The role of satellite glial cells in orofacial pain. J Neurosci Res 97:393–401. https://doi.org/10.1002/jnr.24341

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhang Y, Song N, Liu F et al (2019) Activation of mitogen-activated protein kinases in satellite glial cells of the trigeminal ganglion contributes to substance P-mediated inflammatory pain. Int J Oral Sci 11:24. https://doi.org/10.1038/s41368-019-0055-0

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Afroz S, Arakaki R, Iwasa T et al (2019) CGRP induces differential regulation of cytokines from satellite glial cells in trigeminal ganglia and orofacial nociception. Int J Mol Sci 20:711. https://doi.org/10.3390/ijms20030711

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zhang P, Bi R-Y, Gan Y-H (2018) Glial interleukin-1β upregulates neuronal sodium channel 1.7 in trigeminal ganglion contributing to temporomandibular joint inflammatory hypernociception in rats. J Neuroinflammation 15:117. https://doi.org/10.1186/s12974-018-1154-0

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zha T, Fang X, Wan J et al (2025) Preclinical insights into the role of Kir4.1 in chronic pain and depression: mechanisms and therapeutic potential. Biomolecules 15:165. https://doi.org/10.3390/biom15020165

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zhang Y-Y, Liu F, Lin J et al (2022) Activation of the N-methyl-D-aspartate receptor contributes to orofacial neuropathic and inflammatory allodynia by facilitating calcium-calmodulin-dependent protein kinase II phosphorylation in mice. Brain Res Bull 185:174–192. https://doi.org/10.1016/j.brainresbull.2022.05.003

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lin J, Zhang Y-Y, Liu F et al (2019) The P2Y14 receptor in the trigeminal ganglion contributes to the maintenance of inflammatory pain. Neurochem Int 131:104567. https://doi.org/10.1016/j.neuint.2019.104567

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Velasco E, Flores-Cortés M, Guerra-Armas J et al (2024) Is chronic pain caused by central sensitization? A review and critical point of view. Neurosci Biobehavioral Reviews 167:105886. https://doi.org/10.1016/j.neubiorev.2024.105886

    Article 

    Google Scholar 

  • Harper DE, Schrepf A, Clauw DJ (2016) Pain mechanisms and centralized pain in temporomandibular disorders. J Dent Res 95:1102–1108. https://doi.org/10.1177/0022034516657070

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kobayashi M, Nakaya Y (2020) Anatomical aspects of corticotrigeminal projections to the medullary dorsal Horn. J Oral Sci 62:144–146. https://doi.org/10.2334/josnusd.19-0386

    Article 
    PubMed 

    Google Scholar 

  • Choi I-S, Cho J-H, Jang I-S (2013) 5-Hydroxytryptamine 1A receptors inhibit glutamate release in rat medullary dorsal Horn neurons. NeuroReport 24:399–403. https://doi.org/10.1097/WNR.0b013e3283614cbf

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Choi I-S, Cho J-H, An C-H et al (2012) 5-HT(1B) receptors inhibit glutamate release from primary afferent terminals in rat medullary dorsal Horn neurons. Br J Pharmacol 167:356–367. https://doi.org/10.1111/j.1476-5381.2012.01964.x

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Suárez-Pereira I, Llorca-Torralba M, Bravo L et al (2022) The role of the locus coeruleus in pain and associated Stress-Related disorders. Biol Psychiatry 91:786–797. https://doi.org/10.1016/j.biopsych.2021.11.023

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Haleem DJ (2019) Targeting Serotonin1A receptors for treating chronic pain and depression. Curr Neuropharmacol 17:1098–1108. https://doi.org/10.2174/1570159X17666190811161807

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Cheng J (2018) Mechanisms of pathologic pain. In: Cheng J, Rosenquist RW (eds) Fundamentals of pain medicine. Springer International Publishing, Cham, pp 21–25

    Chapter 

    Google Scholar 

  • Xie YF, Zhang S, Chiang CY et al (2007) Involvement of glia in central sensitization in trigeminal subnucleus caudalis (medullary dorsal horn). Brain Behav Immun 21:634–641. https://doi.org/10.1016/j.bbi.2006.07.008

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kimura LF, Novaes LS, Picolo G et al (2022) How environmental enrichment balances out neuroinflammation in chronic pain and comorbid depression and anxiety disorders. Br J Pharmacol 179:1640–1660. https://doi.org/10.1111/bph.15584

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Liu F, Zhang Y-Y, Song N et al (2019) GABAB receptor activation attenuates inflammatory orofacial pain by modulating interleukin-1β in satellite glial cells: role of NF-κB and MAPK signaling pathways. Brain Res Bull 149:240–250. https://doi.org/10.1016/j.brainresbull.2019.04.018

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Modoux M, Rolhion N, Mani S, Sokol H (2021) Tryptophan metabolism as a Pharmacological target. Trends Pharmacol Sci 42:60–73. https://doi.org/10.1016/j.tips.2020.11.006

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Schwarcz R, Bruno JP, Muchowski PJ, Wu H-Q (2012) Kynurenines in the mammalian brain: when physiology Meets pathology. Nat Rev Neurosci 13:465–477. https://doi.org/10.1038/nrn3257

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Felger JC, Treadway MT (2017) Inflammation effects on motivation and motor activity: role of dopamine. Neuropsychopharmacol 42:216–241. https://doi.org/10.1038/npp.2016.143

    Article 
    CAS 

    Google Scholar 

  • Sin R, Sotogaku N, Ohnishi YN et al (2023) Inhibition of STAT-mediated cytokine responses to chemically-induced colitis prevents inflammation-associated neurobehavioral impairments. Brain Behav Immun 114:173–186. https://doi.org/10.1016/j.bbi.2023.08.019

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Banks WA (2015) The Blood-brain barrier in neuroimmunology: Tales of separation and assimilation. Brain Behav Immun 0:1–8. https://doi.org/10.1016/j.bbi.2014.08.007

    Article 
    CAS 

    Google Scholar 

  • Chen Y, Feng X, Cheung C-W, Liu JA (2022) Mode of action of astrocytes in pain: from the spinal cord to the brain. Prog Neurobiol 219:102365. https://doi.org/10.1016/j.pneurobio.2022.102365

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Shrivastava M, Battaglino R, Ye L (2021) A comprehensive review on biomarkers associated with painful temporomandibular disorders. Int J Oral Sci 13:23. https://doi.org/10.1038/s41368-021-00129-1

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Sire A, Marotta N, Ferrillo M et al (2022) Oxygen-Ozone therapy for reducing Pro-Inflammatory cytokines serum levels in musculoskeletal and temporomandibular disorders: A comprehensive review. Int J Mol Sci 23:2528. https://doi.org/10.3390/ijms23052528

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Cui S-J, Fu Y, Liu Y et al (2019) Chronic inflammation deteriorates structure and function of collagen fibril in rat temporomandibular joint disc. Int J Oral Sci 11:2. https://doi.org/10.1038/s41368-018-0036-8

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Köhler CA, Freitas TH, Maes M et al (2017) Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiat Scand 135:373–387. https://doi.org/10.1111/acps.12698

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kuring JK, Mathias JL, Ward L, Tachas G (2023) Inflammatory markers in persons with clinically-significant depression, anxiety or PTSD: A systematic review and meta-analysis. J Psychiatr Res 168:279–292. https://doi.org/10.1016/j.jpsychires.2023.10.009

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Jasim H, Ghafouri B, Gerdle B et al (2020) Altered levels of salivary and plasma pain related markers in temporomandibular disorders. J Headache Pain 21:105. https://doi.org/10.1186/s10194-020-01160-z

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Alhilou AM, Shimada A, Svensson CI et al (2021) Sex-related differences in response to masseteric injections of glutamate and nerve growth factor in healthy human participants. Sci Rep 11:13873. https://doi.org/10.1038/s41598-021-93171-2

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Chung M-K, Ro JY (2020) Peripheral glutamate receptor and transient receptor potential channel mechanisms of craniofacial muscle pain. Mol Pain 16:1744806920914204. https://doi.org/10.1177/1744806920914204

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zunhammer M, Schweizer LM, Witte V et al (2016) Combined glutamate and glutamine levels in pain-processing brain regions are associated with individual pain sensitivity. Pain 157:2248. https://doi.org/10.1097/j.pain.0000000000000634

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Antonopoulos SR, Garten DA, Durham PL (2024) Dietary supplementation with grape seed extract from vitus vinifera prevents suppression of GABAergic protein expression in female Sprague Dawley trigeminal ganglion in a model of chronic temporomandibular joint disorder. Arch Oral Biol 165:106014. https://doi.org/10.1016/j.archoralbio.2024.106014

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Xue Y, Mo S, Li Y et al (2024) Dissecting neural circuits from rostral ventromedial medulla to spinal trigeminal nucleus bidirectionally modulating craniofacial mechanical sensitivity. Prog Neurobiol 232:102561. https://doi.org/10.1016/j.pneurobio.2023.102561

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhu X, Zhou W, Jin Y et al (2019) A central amygdala input to the parafascicular nucleus controls comorbid pain in depression. Cell Rep 29:3847–3858e5. https://doi.org/10.1016/j.celrep.2019.11.003

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Jin Y, Meng Q, Mei L et al (2020) A somatosensory cortex input to the caudal dorsolateral striatum controls comorbid anxiety in persistent pain. Pain 161:416–428. https://doi.org/10.1097/j.pain.0000000000001724

    Article 
    PubMed 

    Google Scholar 

  • Wang D, Pan X, Zhou Y et al (2023) Lateral septum-lateral hypothalamus circuit dysfunction in comorbid pain and anxiety. Mol Psychiatry 28:1090–1100. https://doi.org/10.1038/s41380-022-01922-y

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Meriney SD, Fanselow EE (2019) Chap. 17 – Monoamine Transmitters. In: Meriney SD, Fanselow EE (eds) Synaptic Transmission. Academic Press, pp 369–398

  • Boku S, Nakagawa S, Toda H, Hishimoto A (2018) Neural basis of major depressive disorder: beyond monoamine hypothesis. Psychiatry Clin Neurosci 72:3–12. https://doi.org/10.1111/pcn.12604

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Courtney NA, Ford CP (2016) Mechanisms of 5-HT1A receptor-mediated transmission in dorsal Raphe serotonin neurons. J Physiol 594:953–965. https://doi.org/10.1113/JP271716

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhang Q, Shao A, Jiang Z et al (2019) The exploration of mechanisms of comorbidity between migraine and depression. J Cell Mol Med 23:4505–4513. https://doi.org/10.1111/jcmm.14390

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Christidis N, Kang I, Cairns BE et al (2014) Expression of 5-HT3 receptors and TTX resistant sodium channels (NaV1.8) on muscle nerve fibers in pain-free humans and patients with chronic myofascial temporomandibular disorders. J Headache Pain 15:63. https://doi.org/10.1186/1129-2377-15-63

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Suto T, Eisenach JC, Hayashida K (2014) Peripheral nerve injury and Gabapentin, but not their combination, impair attentional behavior via direct effects on noradrenergic signaling in the brain. PAIN® 155:1935–1942. https://doi.org/10.1016/j.pain.2014.05.014

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Llorca-Torralba M, Camarena-Delgado C, Suárez-Pereira I et al (2021) Pain and depression comorbidity causes asymmetric plasticity in the locus coeruleus neurons. Brain 145:154–167. https://doi.org/10.1093/brain/awab239

    Article 
    PubMed Central 

    Google Scholar 

  • Haubrich J, Bernabo M, Nader K (2020) Noradrenergic projections from the locus coeruleus to the amygdala constrain fear memory reconsolidation. Elife 9:e57010. https://doi.org/10.7554/eLife.57010

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Giustino TF, Ramanathan KR, Totty MS et al (2020) Locus coeruleus norepinephrine drives Stress-Induced increases in basolateral amygdala firing and impairs extinction learning. J Neurosci 40:907–916. https://doi.org/10.1523/JNEUROSCI.1092-19.2019

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Dawson A, Stensson N, Ghafouri B et al (2016) Dopamine in plasma – a biomarker for myofascial TMD pain? J Headache Pain 17:65. https://doi.org/10.1186/s10194-016-0656-3

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Mitsi V, Zachariou V (2016) Modulation of pain, nociception, and analgesia by the brain reward center. Neuroscience 338:81–92. https://doi.org/10.1016/j.neuroscience.2016.05.017

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Taylor AMW, Becker S, Schweinhardt P, Cahill C (2016) Mesolimbic dopamine signaling in acute and chronic pain: implications for motivation, analgesia, and addiction. Pain 157:1194–1198. https://doi.org/10.1097/j.pain.0000000000000494

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grace AA (2016) Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci 17:524–532. https://doi.org/10.1038/nrn.2016.57

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wang C, Kavalali E, Monteggia L (2022) BDNF signaling in context: from synaptic regulation to psychiatric disorders. Cell 185:62–76. https://doi.org/10.1016/j.cell.2021.12.003

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Merighi A (2024) Brain-derived neurotrophic factor, nociception, and pain. Biomolecules 14:539. https://doi.org/10.3390/biom14050539

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wang H, Wei Y, Pu Y et al (2019) Brain-derived neurotrophic factor stimulation of T-type Ca2 + channels in sensory neurons contributes to increased peripheral pain sensitivity. Sci Signal 12:eaaw2300. https://doi.org/10.1126/scisignal.aaw2300

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Liu D, Tang Q-Q, Yin C et al (2018) BDNF-mediated projection-specific regulation of depressive-like and nociceptive behaviors in mesolimbic reward circuitry. Pain 159:175. https://doi.org/10.1097/j.pain.0000000000001083

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kim H, Kim H, Suh HJ, Choi H-S (2024) Lactobacillus brevis-Fermented Gamma-Aminobutyric acid ameliorates Depression- and Anxiety-Like behaviors by activating the Brain-Derived neurotrophic Factor-Tropomyosin receptor kinase B signaling pathway in BALB/C mice. J Agric Food Chem 72:2977–2988. https://doi.org/10.1021/acs.jafc.3c07260

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Chen Z, Tang Z, Zou K et al (2021) D-Serine produces antidepressant-like effects in mice through suppression of BDNF signaling pathway and regulation of synaptic adaptations in the nucleus accumbens. Mol Med 27:127. https://doi.org/10.1186/s10020-021-00389-x

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Durham PL, Masterson CG (2013) Two mechanisms involved in trigeminal CGRP release: implications for migraine treatment. Headache 53:67–80. https://doi.org/10.1111/j.1526-4610.2012.02262.x

    Article 
    PubMed 

    Google Scholar 

  • Suttle A, Wang P, Dias FC et al (2023) Sensory Neuron-TRPV4 modulates temporomandibular disorder pain via CGRP in mice. J Pain 24:782–795. https://doi.org/10.1016/j.jpain.2022.12.001

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Gungor NZ, Pare D (2014) CGRP inhibits neurons of the bed nucleus of the stria terminalis: implications for the regulation of fear and anxiety. J Neurosci 34:60–65. https://doi.org/10.1523/JNEUROSCI.3473-13.2014

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Humes C, Sic A, Knezevic NN (2024) Substance P’s impact on chronic pain and psychiatric Conditions-A narrative review. Int J Mol Sci 25:5905. https://doi.org/10.3390/ijms25115905

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Shu H, Liu S, Crawford J, Tao F (2023) A female-specific role for trigeminal dynorphin in orofacial pain comorbidity. Pain 164:2801. https://doi.org/10.1097/j.pain.0000000000002980

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Feldreich A, Ernberg M, Rosén A (2017) Reduction in maximum pain after surgery in temporomandibular joint patients is associated with decreased beta-endorphin levels – a pilot study. Int J Oral Maxillofac Surg 46:97–103. https://doi.org/10.1016/j.ijom.2016.08.010

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wong S, Le GH, Vasudeva S et al (2024) Preclinical and clinical efficacy of kappa opioid receptor antagonists for depression: A systematic review. J Affect Disord 362:816–827. https://doi.org/10.1016/j.jad.2024.07.030

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Brandl F, Weise B, Mulej Bratec S et al (2022) Common and specific large-scale brain changes in major depressive disorder, anxiety disorders, and chronic pain: a transdiagnostic multimodal meta-analysis of structural and functional MRI studies. Neuropsychopharmacol 47:1071–1080. https://doi.org/10.1038/s41386-022-01271-y

    Article 

    Google Scholar 

  • Yin Y, He S, Xu J et al (2020) The neuro-pathophysiology of temporomandibular disorders-related pain: a systematic review of structural and functional MRI studies. J Headache Pain 21:78. https://doi.org/10.1186/s10194-020-01131-4

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clements CC, Ascunce K, Nelson CA (2023) In context: A developmental model of reward processing, with implications for autism and sensitive periods. J Am Acad Child Adolesc Psychiatry 62. https://doi.org/10.1016/j.jaac.2022.07.861

  • Bamford NS, Wightman RM, Sulzer D (2018) Dopamine’s effects on corticostriatal synapses during reward-based behaviors. Neuron 97:494–510. https://doi.org/10.1016/j.neuron.2018.01.006

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Yang S, Boudier-Revéret M, Choo YJ, Chang MC (2020) Association between chronic pain and alterations in the mesolimbic dopaminergic system. Brain Sci 10:701. https://doi.org/10.3390/brainsci10100701

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Nees F, Becker S, Millenet S et al (2017) Brain substrates of reward processing and the µ-opioid receptor: a pathway into pain? Pain 158:212. https://doi.org/10.1097/j.pain.0000000000000720

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Yin Y, He S, He N et al (2024) Brain alterations in sensorimotor and emotional regions associated with temporomandibular disorders. Oral Dis 30:1367–1378. https://doi.org/10.1111/odi.14466

    Article 
    PubMed 

    Google Scholar 

  • Chen X-F, He P, Xu K-H et al (2022) Disrupted spontaneous neural activity and its interaction with pain and emotion in temporomandibular disorders. Front NeuroSci 16

  • Liu N, Sun H, Yang C et al (2024) The difference in volumetric alternations of the orbitofrontal-limbic-striatal system between major depressive disorder and anxiety disorders: A systematic review and voxel-based meta-analysis. J Affect Disord 350:65–77. https://doi.org/10.1016/j.jad.2024.01.043

    Article 
    PubMed 

    Google Scholar 

  • Ding Y-D, Chen X, Chen Z-B et al (2022) Reduced nucleus accumbens functional connectivity in reward network and default mode network in patients with recurrent major depressive disorder. Transl Psychiatry 12:236. https://doi.org/10.1038/s41398-022-01995-x

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bore MC, Liu X, Huang X et al (2024) Common and separable neural alterations in adult and adolescent depression – Evidence from neuroimaging meta-analyses. Neurosci Biobehavioral Reviews 164:105835. https://doi.org/10.1016/j.neubiorev.2024.105835

    Article 

    Google Scholar 

  • Zhou Z, Gao Y, Bao W et al (2024) Distinctive intrinsic functional connectivity alterations of anterior cingulate cortex subdivisions in major depressive disorder: A systematic review and meta-analysis. Neurosci Biobehav Rev 159:105583. https://doi.org/10.1016/j.neubiorev.2024.105583

    Article 
    PubMed 

    Google Scholar 

  • Menon V (2011) Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci 15:483–506. https://doi.org/10.1016/j.tics.2011.08.003

    Article 
    PubMed 

    Google Scholar 

  • Schimmelpfennig J, Topczewski J, Zajkowski W, Jankowiak-Siuda K (2023) The role of the salience network in cognitive and affective deficits. Front Hum Neurosci 17:1133367. https://doi.org/10.3389/fnhum.2023.1133367

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Massullo C, Carbone GA, Farina B et al (2020) Dysregulated brain salience within a triple network model in high trait anxiety individuals: A pilot EEG functional connectivity study. Int J Psychophysiol 157:61–69. https://doi.org/10.1016/j.ijpsycho.2020.09.002

    Article 
    PubMed 

    Google Scholar 

  • Hamilton JP, Chen MC, Gotlib IH (2013) Neural systems approaches to Understanding major depressive disorder: an intrinsic functional organization perspective. Neurobiol Dis. 52 C:4

    Article 
    PubMed 

    Google Scholar 

  • Ayoub LJ, Seminowicz DA, Moayedi M (2018) A meta-analytic study of experimental and chronic orofacial pain excluding headache disorders. Neuroimage Clin 20:901–912. https://doi.org/10.1016/j.nicl.2018.09.018

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brandl F, Le Houcq Corbi Z, Mulej Bratec S, Sorg C (2019) Cognitive reward control recruits medial and lateral frontal cortices, which are also involved in cognitive emotion regulation: A coordinate-based meta-analysis of fMRI studies. NeuroImage 200:659–673. https://doi.org/10.1016/j.neuroimage.2019.07.008

    Article 
    PubMed 

    Google Scholar 

  • Collins KA, Mendelsohn A, Cain CK, Schiller D (2014) Taking action in the face of threat: neural synchronization predicts adaptive coping. J Neurosci 34:14733–14738. https://doi.org/10.1523/JNEUROSCI.2152-14.2014

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Dammann J, Klepzig K, Schenkenberger E et al (2020) Association of decrease in Insula fMRI activation with changes in trait anxiety in patients with craniomandibular disorder (CMD). Behav Brain Res 379:112327. https://doi.org/10.1016/j.bbr.2019.112327

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Harfeldt K, Alexander L, Lam J et al (2018) Spectroscopic differences in posterior Insula in patients with chronic temporomandibular pain. Scandinavian J Pain 18:351–361. https://doi.org/10.1515/sjpain-2017-0159

    Article 

    Google Scholar 

  • Menon V (2023) 20 Years of the default mode network: a review and synthesis. Neuron 111:2469–2487. https://doi.org/10.1016/j.neuron.2023.04.023

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ronde M, van der Zee EA, Kas MJH (2024) Default mode network dynamics: an integrated neurocircuitry perspective on social dysfunction in human brain disorders. Neurosci Biobehavioral Reviews 164:105839. https://doi.org/10.1016/j.neubiorev.2024.105839

    Article 

    Google Scholar 

  • Alshelh Z, Marciszewski KK, Akhter R et al (2018) Disruption of default mode network dynamics in acute and chronic pain States. Neuroimage Clin 17:222–231. https://doi.org/10.1016/j.nicl.2017.10.019

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kucyi A, Moayedi M, Weissman-Fogel I et al (2014) Enhanced medial Prefrontal-Default mode network functional connectivity in chronic pain and its association with pain rumination. J Neurosci 34:3969–3975. https://doi.org/10.1523/JNEUROSCI.5055-13.2014

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Marchetti I, Koster EHW, Sonuga-Barke EJ, De Raedt R (2012) The default mode network and recurrent depression: A Neurobiological model of cognitive risk factors. Neuropsychol Rev 22:229–251. https://doi.org/10.1007/s11065-012-9199-9

    Article 
    PubMed 

    Google Scholar 

  • Briley P, Webster L, Boutry C et al (2022) Resting-state functional connectivity correlates of anxiety co-morbidity in major depressive disorder. Neurosci Biobehavioral Reviews 138:104701. https://doi.org/10.1016/j.neubiorev.2022.104701

    Article 
    CAS 

    Google Scholar 

  • Moayedi M, Weissman-Fogel I, Crawley AP et al (2011) Contribution of chronic pain and neuroticism to abnormal forebrain Gray matter in patients with temporomandibular disorder. NeuroImage 55:277–286. https://doi.org/10.1016/j.neuroimage.2010.12.013

    Article 
    PubMed 

    Google Scholar 

  • Moayedi M, Weissman-Fogel I, Salomons TV et al (2012) Abnormal Gray matter aging in chronic pain patients. Brain Res 1456:82–93. https://doi.org/10.1016/j.brainres.2012.03.040

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Picó-Pérez M, Radua J, Steward T et al (2017) Emotion regulation in mood and anxiety disorders: A meta-analysis of fMRI cognitive reappraisal studies. Prog Neuropsychopharmacol Biol Psychiatry 79:96–104. https://doi.org/10.1016/j.pnpbp.2017.06.001

    Article 
    PubMed 

    Google Scholar 

  • Xu J, Van Dam NT, Feng C et al (2019) Anxious brain networks: A coordinate-based activation likelihood Estimation meta-analysis of resting-state functional connectivity studies in anxiety. Neurosci Biobehav Rev 96:21–30. https://doi.org/10.1016/j.neubiorev.2018.11.005

    Article 
    PubMed 

    Google Scholar 

  • Lin J, Cao D-Y (2024) Associations between temporomandibular disorders and brain Imaging-Derived phenotypes. Int Dent J 74:784–793. https://doi.org/10.1016/j.identj.2024.01.008

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang D, Wu Y, Yue J, Wang X (2024) Causal relationship between resting-state networks and depression: a bidirectional two-sample Mendelian randomization study. BMC Psychiatry 24:402. https://doi.org/10.1186/s12888-024-05857-2

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zanoaga M-D, Friligkou E, He J et al (2024) Brainwide Mendelian randomization study of anxiety disorders and symptoms. Biol Psychiatry 95:810–817. https://doi.org/10.1016/j.biopsych.2023.11.006

    Article 
    PubMed 

    Google Scholar 

  • Rodhen RM, de Holanda TA, Barbon FJ et al (2022) Invasive surgical procedures for the management of internal derangement of the temporomandibular joint: a systematic review and meta-analysis regarding the effects on pain and jaw mobility. Clin Oral Investig 26:3429–3446. https://doi.org/10.1007/s00784-022-04428-7

    Article 
    PubMed 

    Google Scholar 

  • Busse JW, Casassus R, Carrasco-Labra A et al (2023) Management of chronic pain associated with temporomandibular disorders: a clinical practice guideline. BMJ 383:e076227. https://doi.org/10.1136/bmj-2023-076227

    Article 
    PubMed 

    Google Scholar 

  • Ohrbach R, Dworkin SF (1998) Five-year outcomes in TMD: relationship of changes in pain to changes in physical and psychological variables. Pain 74:315–326. https://doi.org/10.1016/s0304-3959(97)00194-2

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Armijo-Olivo S, Pitance L, Singh V et al (2016) Effectiveness of manual therapy and therapeutic exercise for temporomandibular disorders: systematic review and Meta-Analysis. Phys Ther 96:9–25. https://doi.org/10.2522/ptj.20140548

    Article 
    PubMed 

    Google Scholar 

  • Al-Moraissi EA, Conti PCR, Alyahya A et al (2022) The hierarchy of different treatments for myogenous temporomandibular disorders: a systematic review and network meta-analysis of randomized clinical trials. Oral Maxillofac Surg 26:519–533. https://doi.org/10.1007/s10006-021-01009-y

    Article 
    PubMed 

    Google Scholar 

  • Alkhutari AS, Alyahya A, Rodrigues Conti PC et al (2021) Is the therapeutic effect of occlusal stabilization appliances more than just placebo effect in the management of painful temporomandibular disorders? A network meta-analysis of randomized clinical trials. J Prosthet Dent 126:24–32. https://doi.org/10.1016/j.prosdent.2020.08.015

    Article 
    PubMed 

    Google Scholar 

  • Al-Moraissi EA, Goddard G, Christidis N (2023) Are acupuncture and dry needling effective in the management of masticatory muscle pain: A network meta-analysis of randomised clinical trials. J Oral Rehabil 50:87–97. https://doi.org/10.1111/joor.13382

    Article 
    PubMed 

    Google Scholar 

  • Al-Moraissi EA, Alradom J, Aladashi O et al (2020) Needling therapies in the management of myofascial pain of the masticatory muscles: A network meta-analysis of randomised clinical trials. J Oral Rehabil 47:910–922. https://doi.org/10.1111/joor.12960

    Article 
    PubMed 

    Google Scholar 

  • Driscoll MA, Edwards RR, Becker WC et al (2021) Psychological interventions for the treatment of chronic pain in adults. Psychol Sci Public Interest 22:52–95. https://doi.org/10.1177/15291006211008157

    Article 
    PubMed 

    Google Scholar 

  • Yoshino A, Okamoto Y, Okada G et al (2018) Changes in resting-state brain networks after cognitive-behavioral therapy for chronic pain. Psychol Med 48:1148–1156. https://doi.org/10.1017/S0033291717002598

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Bao S, Qiao M, Lu Y, Jiang Y (2022) Neuroimaging mechanism of cognitive behavioral therapy in pain management. Pain Res Manag 2022:6266619. https://doi.org/10.1155/2022/6266619

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hwangbo N-K, Woo K-C, Kim S-T (2023) Evaluation of clinical symptoms improvement by cognitive behavioral therapy using a smartphone application in patients with temporomandibular disorder. Health Care (Don Mills) 11:1443. https://doi.org/10.3390/healthcare11101443

    Article 

    Google Scholar 

  • Penlington C, Bowes C, Taylor G et al (2022) Psychological therapies for temporomandibular disorders (TMDs). Cochrane Database Syst Rev 8:CD013515. https://doi.org/10.1002/14651858.CD013515.pub2

    Article 
    PubMed 

    Google Scholar 

  • Zhang Q, Zhang J, Ran W et al (2020) Effectiveness of cognitive behavioral therapy on kinesiophobia and oral health-related quality of life in patients with temporomandibular disorders, study protocol for a randomized controlled trial. Med (Baltim) 99:e23295. https://doi.org/10.1097/MD.0000000000023295

    Article 
    CAS 

    Google Scholar 

  • Brewer JA, Garrison KA (2014) The posterior cingulate cortex as a plausible mechanistic target of meditation: findings from neuroimaging. Ann Ny Acad Sci 1307:19–27. https://doi.org/10.1111/nyas.12246

    Article 
    PubMed 

    Google Scholar 

  • Pal A, Mukhopadhyay P, Biswas R, Bhattacharya D (2023) Mindfulness influences the psycho-social dimension of chronic pain: A randomized controlled clinical trial in Indian context. Indian J Psychiatry 65:1061–1068. https://doi.org/10.4103/indianjpsychiatry.indianjpsychiatry_393_23

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Veehof MM, Trompetter HR, Bohlmeijer ET, Schreurs KMG (2016) Acceptance- and mindfulness-based interventions for the treatment of chronic pain: a meta-analytic review. Cogn Behav Ther 45:5–31. https://doi.org/10.1080/16506073.2015.1098724

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Salazar-Méndez J, Núñez-Cortés R, Suso-Martí L et al (2023) Dosage matters: Uncovering the optimal duration of pain neuroscience education to improve psychosocial variables in chronic musculoskeletal pain. A systematic review and meta-analysis with moderator analysis. Neurosci Biobehavioral Reviews 153:105328. https://doi.org/10.1016/j.neubiorev.2023.105328

    Article 

    Google Scholar 

  • Christidis N, Al-Moraissi EA, Al-Ak’hali MS et al (2024) Psychological treatments for temporomandibular disorder pain-A systematic review. J Oral Rehabil 51:1320–1336. https://doi.org/10.1111/joor.13693

    Article 
    PubMed 

    Google Scholar 

  • Christidis N, Al-Moraissi E, Barjandi G et al (2024) Pharmacological treatments of temporomandibular disorders: A systematic review including a network Meta-Analysis. DRUGS 84:59–81. https://doi.org/10.1007/s40265-023-01971-9

    Article 
    PubMed 

    Google Scholar 

  • Bonilla-Jaime H, Sánchez-Salcedo JA, Estevez-Cabrera MM et al (2022) Depression and pain: use of antidepressants. Curr Neuropharmacol 20:384–402. https://doi.org/10.2174/1570159X19666210609161447

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Barakat A, Hamdy MM, Elbadr MM (2018) Uses of Fluoxetine in nociceptive pain management: A literature overview. Eur J Pharmacol 829:12–25. https://doi.org/10.1016/j.ejphar.2018.03.042

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Birkinshaw H, Friedrich C, Cole P et al (2021) Antidepressants for pain management in adults with chronic pain: a network meta-analysis. Cochrane Database Syst Rev 2021:CD014682. https://doi.org/10.1002/14651858.CD014682

    Article 
    PubMed Central 

    Google Scholar 

  • Kofod J, Elfving B, Nielsen EH et al (2022) Depression and inflammation: correlation between changes in inflammatory markers with antidepressant response and long-term prognosis. Eur Neuropsychopharmacol 54:116–125. https://doi.org/10.1016/j.euroneuro.2021.09.006

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Giggins OM, Persson UM, Caulfield B (2013) Biofeedback in rehabilitation. J Neuroeng Rehabil 10:60. https://doi.org/10.1186/1743-0003-10-60

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bergmann A, Edelhoff D, Schubert O et al (2020) Effect of treatment with a full-occlusion biofeedback splint on sleep Bruxism and TMD pain: a randomized controlled clinical trial. Clin Oral Investig 24:4005–4018. https://doi.org/10.1007/s00784-020-03270-z

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dillon A, Kelly M, Robertson IH, Robertson DA (2016) Smartphone applications utilizing biofeedback can aid stress reduction. Front Psychol 7:832. https://doi.org/10.3389/fpsyg.2016.00832

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liao H-Y, Satyanarayanan SK, Lin Y-W, Su K-P (2023) Clinical efficacy and immune effects of acupuncture in patients with comorbid chronic pain and major depression disorder: A double-blinded, randomized controlled crossover study. Brain Behav Immun 110:339–347. https://doi.org/10.1016/j.bbi.2023.03.016

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Alessandri-Bonetti A, Lobbezoo F, Mangino G et al (2024) Obstructive sleep apnea treatment improves temporomandibular disorder pain. Sleep Breath 28:203–209. https://doi.org/10.1007/s11325-023-02883-4

    Article 
    PubMed 

    Google Scholar 

  • Scott AJ, Webb TL, Martyn-St James M et al (2021) Improving sleep quality leads to better mental health: A meta-analysis of randomised controlled trials. Sleep Med Rev 60:101556. https://doi.org/10.1016/j.smrv.2021.101556

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Greene CS, Manfredini D (2020) Treating temporomandibular disorders in the 21st century: can we finally eliminate the third pathway? J Oral Facial Pain Headache 34:206–216. https://doi.org/10.11607/ofph.2608

    Article 
    PubMed 

    Google Scholar 

  • Greene CS, Manfredini D (2021) Transitioning to chronic temporomandibular disorder pain: a combination of patient vulnerabilities and iatrogenesis. J Oral Rehabil 48:1077–1088. https://doi.org/10.1111/joor.13180

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Manfredini D, Bender S (2024) The professional burden of protecting TMD patients. Cranio 42:639–640. https://doi.org/10.1080/08869634.2024.2375194

    Article 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *