Site icon Preventive Health and Exercise

Predicting anxiety treatment outcome in community mental health services using linked health administrative data

Predicting anxiety treatment outcome in community mental health services using linked health administrative data
  • National Study of Mental Health and Wellbeing. (2023).

  • Villaume, S. C., Chen, S. & Adam, E. K. Age disparities in prevalence of anxiety and depression among US adults during the COVID-19 pandemic. JAMA Netw. Open 6(11), e2345073 (2023).

    Article 

    Google Scholar 

  • Australian Institute of Health and Welfare. Medicare-subsidised mental health-specific services. (2023).

  • Castillo, E. G. et al. Community interventions to promote mental health and social equity. Curr. Psychiatry Rep. 21, 1–14. (2019).

    Article 

    Google Scholar 

  • Australian institute of Health and Welfare. Community Services—Mental health AIHW. (2023).

  • McMahon, F. J. Prediction of treatment outcomes in psychiatry—Where do we stand?. Dialogues Clin. Neurosci. 16(4), 455–464 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chekroud, A. M. et al. The promise of machine learning in predicting treatment outcomes in psychiatry. World Psychiatry 20(2), 154–170 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eilertsen, S. E. H. & Eilertsen, T. H. Why is it so hard to identify (consistent) predictors of treatment outcome in psychotherapy? Clinical and research perspectives. BMC Psychol. 11(1), 198 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nemesure, M. D., Heinz, M. V., Huang, R. & Jacobson, N. C. Predictive modeling of depression and anxiety using electronic health records and a novel machine learning approach with artificial intelligence. Sci. Rep. 11(1), 1980 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stanojevic, M., Norris, L. A., Kendall, P. C. & Obradovic, Z. Predicting anxiety treatment outcomes with machine learning. In 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA) 957–962 (IEEE, 2022).

  • Hornstein, S., Forman-Hoffman, V., Nazander, A., Ranta, K. & Hilbert, K. Predicting therapy outcome in a digital mental health intervention for depression and anxiety: A machine learning approach. Digit. Health 7, 20552076211060659 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Erceg-Hurn, D. M., Campbell, B. N. & McEvoy, P. M. What explains the failure to identify replicable moderators of symptom change in social anxiety disorder?. J. Anxiety Disord. 94, 102676 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Meehl, P. E. Clinical versus statistical prediction: A theoretical analysis and a review of the evidence (1954).

  • Dawes, R. M., Faust, D. & Meehl, P. E. Clinical versus actuarial judgment. Science 243(4899), 1668–1674 (1989).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lilienfeld, S. O., Ritschel, L. A., Lynn, S. J., Cautin, R. L. & Latzman, R. D. Why ineffective psychotherapies appear to work: A taxonomy of causes of spurious therapeutic effectiveness. Perspect. Psychol. Sci. 9(4), 355–387 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Mululo, S. C. C., Menezes, G. B. D., Vigne, P. & Fontenelle, L. F. A review on predictors of treatment outcome in social anxiety disorder. Braz. J. Psychiatry 34, 92–100 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Ang, Y. S. & Pizzagalli, D. A. Predictors of treatment outcome in adolescent depression. Curr. Treat. Options Psychiatry 8, 18–28 (2021).

    Article 

    Google Scholar 

  • Lee, C. M. Y. et al. Patterns of mental service utilisation: A population-based linkage of over 17 years of health administrative records. Community Ment. Health J. (2024).

    Article 
    PubMed 

    Google Scholar 

  • National Centre for Classification in Health. The International Statistical Classification of Diseases and Related Health Problems, Australian Modification (ICD-10-AM) 10th edn. (Independent Hospital Pricing Authority, 2017).

    Google Scholar 

  • Kessler, R. C. M. D. & Mroczek, D. An Update of the Development of Mental Health Screening Scales for the US National Health Interview Study (University of Michigan, Survey Research Center of the Institute for Social Research, 1992).

  • Kessler, R. C. et al. Screening for serious mental illness in the general population. Arch. Gen. Psychiatry 60(2), 184–189 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Andrews, G. & Slade, T. Interpreting scores on the Kessler Psychological Distress Scale (K10). Aust. N. Z. J. Public Health 25, 494–497 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McEvoy, P. M. et al. Group metacognitive therapy for repetitive negative thinking in primary and non-primary generalized anxiety disorder: An effectiveness trial. J. Affect. Disord. 175, 124–132 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Vallat, R. Pingouin: Statistics in Python. J. Open Source Softw. 3(31), 1026. (2018).

    Article 
    ADS 

    Google Scholar 

  • Jacobson, N. S. & Truax, P. Clinical significance: A statistical approach to defining meaningful change in psychotherapy research. J. Consult. Clin. Psychol. 59, 12–19 (1992).

    Article 

    Google Scholar 

  • Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet 

    Google Scholar 

  • Ali, M. PyCaret: An open source, low-code machine learning library in Python. (2020).

  • Mandrekar, J. N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 5(9), 1315–1316 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Bishop, C. M. & Nasrabadi, N. M. Pattern Recognition and Machine Learning Vol. 4, 738 (Springer, 2006).

    Google Scholar 

  • Strumbelj, E. & Kononenko, I. Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. J. (2014).

    Article 

    Google Scholar 

  • Lundberg, S. M., & Lee, S. I. A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems (NeurIPS) (2017).

  • Guyon, I. & Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 3(2), 1157–1182 (2003).

    Google Scholar 

  • Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240(4857), 1285–1293 (1988).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Streiner, D. L. & Cairney, J. What’s under the ROC? An introduction to receiver operating characteristics curves. Can. J. Psychiatry 52(2), 121–128 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Moore, D. S., Notz, W. & Fligner, M. A. The Basic Practice of Statistics (W.H. Freeman and Company, 2013).

    Google Scholar 

  • Cohen, J. Statistical Power Analysis for the Behavioral Sciences 2nd edn. (Lawrence Erlbaum Associates, 1988).

    Google Scholar 

  • Lambert, M. J. & Harmon, K. L. The merits of implementing routine outcome monitoring in clinical practice. Clin. Psychol. Sci. Pract. 25(4), e12268 (2018).

    Article 

    Google Scholar 

  • Naragon-Gainey, K. Meta-analysis of the relations of anxiety sensitivity to the depressive and anxiety disorders. Psychol. Bull. 136(1), 128 (2010).

    Article 
    PubMed 

    Google Scholar 

  • McEvoy, P. M., Hyett, M. P., Shihata, S., Price, J. E. & Strachan, L. The impact of methodological and measurement factors on transdiagnostic associations with intolerance of uncertainty: A meta-analysis. Clin. Psychol. Rev. 73, 101778 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Akbari, M., Seydavi, M., Hosseini, Z. S., Krafft, J. & Levin, M. E. Experiential avoidance in depression, anxiety, obsessive-compulsive related, and posttraumatic stress disorders: A comprehensive systematic review and meta-analysis. J. Context. Behav. Sci. 24, 65–78 (2022).

    Article 

    Google Scholar 

  • Vaz, A. M., Ferreira, L. I., Gelso, C. & Janeiro, L. The sister concepts of working alliance and real relationship: A meta-analysis. Counsel. Psychol. Q. 37(2), 247–268 (2024).

    Article 

    Google Scholar 

  • de Graaf, R., ten Have, M., Tuithof, M. & van Dorsselaer, S. First-incidence of DSM-IV mood, anxiety and substance use disorders and its determinants: Results from the Netherlands Mental Health Survey and Incidence Study-2. J. Affect. Disord. 149(1–3), 100–107 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Sharma, S., Powers, A., Bradley, B. & Ressler, K. J. Gene × environment determinants of stress-and anxiety-related disorders. Annu. Rev. Psychol. 67(1), 239–261 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Cuijpers, P. Targets and outcomes of psychotherapies for mental disorders: An overview. World Psychiatry 18(3), 276–285 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lundqvist, L. O. et al. Influence of mental health service provision on the perceived quality of life among psychiatric outpatients: Associations and mediating factors. Front. Psychiatry 14, 1282466 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McAleavey, A. A., de Jong, K., Nissen-Lie, H. A., Boswell, J. F., Moltu, C. & Lutz, W. (2024). Routine outcome monitoring and clinical feedback in psychotherapy: Recent advances and future directions. Administration and Policy in Mental Health and Mental Health Services Research, 1–15.

  • link

    Exit mobile version