Predicting anxiety treatment outcome in community mental health services using linked health administrative data

National Study of Mental Health and Wellbeing. (2023).
Villaume, S. C., Chen, S. & Adam, E. K. Age disparities in prevalence of anxiety and depression among US adults during the COVID-19 pandemic. JAMA Netw. Open 6(11), e2345073 (2023).
Google Scholar
Australian Institute of Health and Welfare. Medicare-subsidised mental health-specific services. (2023).
Castillo, E. G. et al. Community interventions to promote mental health and social equity. Curr. Psychiatry Rep. 21, 1–14. (2019).
Google Scholar
Australian institute of Health and Welfare. Community Services—Mental health AIHW. (2023).
McMahon, F. J. Prediction of treatment outcomes in psychiatry—Where do we stand?. Dialogues Clin. Neurosci. 16(4), 455–464 (2014).
Google Scholar
Chekroud, A. M. et al. The promise of machine learning in predicting treatment outcomes in psychiatry. World Psychiatry 20(2), 154–170 (2021).
Google Scholar
Eilertsen, S. E. H. & Eilertsen, T. H. Why is it so hard to identify (consistent) predictors of treatment outcome in psychotherapy? Clinical and research perspectives. BMC Psychol. 11(1), 198 (2023).
Google Scholar
Nemesure, M. D., Heinz, M. V., Huang, R. & Jacobson, N. C. Predictive modeling of depression and anxiety using electronic health records and a novel machine learning approach with artificial intelligence. Sci. Rep. 11(1), 1980 (2021).
Google Scholar
Stanojevic, M., Norris, L. A., Kendall, P. C. & Obradovic, Z. Predicting anxiety treatment outcomes with machine learning. In 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA) 957–962 (IEEE, 2022).
Hornstein, S., Forman-Hoffman, V., Nazander, A., Ranta, K. & Hilbert, K. Predicting therapy outcome in a digital mental health intervention for depression and anxiety: A machine learning approach. Digit. Health 7, 20552076211060659 (2021).
Google Scholar
Erceg-Hurn, D. M., Campbell, B. N. & McEvoy, P. M. What explains the failure to identify replicable moderators of symptom change in social anxiety disorder?. J. Anxiety Disord. 94, 102676 (2023).
Google Scholar
Meehl, P. E. Clinical versus statistical prediction: A theoretical analysis and a review of the evidence (1954).
Dawes, R. M., Faust, D. & Meehl, P. E. Clinical versus actuarial judgment. Science 243(4899), 1668–1674 (1989).
Google Scholar
Lilienfeld, S. O., Ritschel, L. A., Lynn, S. J., Cautin, R. L. & Latzman, R. D. Why ineffective psychotherapies appear to work: A taxonomy of causes of spurious therapeutic effectiveness. Perspect. Psychol. Sci. 9(4), 355–387 (2014).
Google Scholar
Mululo, S. C. C., Menezes, G. B. D., Vigne, P. & Fontenelle, L. F. A review on predictors of treatment outcome in social anxiety disorder. Braz. J. Psychiatry 34, 92–100 (2012).
Google Scholar
Ang, Y. S. & Pizzagalli, D. A. Predictors of treatment outcome in adolescent depression. Curr. Treat. Options Psychiatry 8, 18–28 (2021).
Google Scholar
Lee, C. M. Y. et al. Patterns of mental service utilisation: A population-based linkage of over 17 years of health administrative records. Community Ment. Health J. (2024).
Google Scholar
National Centre for Classification in Health. The International Statistical Classification of Diseases and Related Health Problems, Australian Modification (ICD-10-AM) 10th edn. (Independent Hospital Pricing Authority, 2017).
Kessler, R. C. M. D. & Mroczek, D. An Update of the Development of Mental Health Screening Scales for the US National Health Interview Study (University of Michigan, Survey Research Center of the Institute for Social Research, 1992).
Kessler, R. C. et al. Screening for serious mental illness in the general population. Arch. Gen. Psychiatry 60(2), 184–189 (2003).
Google Scholar
Andrews, G. & Slade, T. Interpreting scores on the Kessler Psychological Distress Scale (K10). Aust. N. Z. J. Public Health 25, 494–497 (2001).
Google Scholar
McEvoy, P. M. et al. Group metacognitive therapy for repetitive negative thinking in primary and non-primary generalized anxiety disorder: An effectiveness trial. J. Affect. Disord. 175, 124–132 (2015).
Google Scholar
Vallat, R. Pingouin: Statistics in Python. J. Open Source Softw. 3(31), 1026. (2018).
Google Scholar
Jacobson, N. S. & Truax, P. Clinical significance: A statistical approach to defining meaningful change in psychotherapy research. J. Consult. Clin. Psychol. 59, 12–19 (1992).
Google Scholar
Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Google Scholar
Ali, M. PyCaret: An open source, low-code machine learning library in Python. (2020).
Mandrekar, J. N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 5(9), 1315–1316 (2010).
Google Scholar
Bishop, C. M. & Nasrabadi, N. M. Pattern Recognition and Machine Learning Vol. 4, 738 (Springer, 2006).
Strumbelj, E. & Kononenko, I. Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. J. (2014).
Google Scholar
Lundberg, S. M., & Lee, S. I. A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems (NeurIPS) (2017).
Guyon, I. & Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 3(2), 1157–1182 (2003).
Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240(4857), 1285–1293 (1988).
Google Scholar
Streiner, D. L. & Cairney, J. What’s under the ROC? An introduction to receiver operating characteristics curves. Can. J. Psychiatry 52(2), 121–128 (2007).
Google Scholar
Moore, D. S., Notz, W. & Fligner, M. A. The Basic Practice of Statistics (W.H. Freeman and Company, 2013).
Cohen, J. Statistical Power Analysis for the Behavioral Sciences 2nd edn. (Lawrence Erlbaum Associates, 1988).
Lambert, M. J. & Harmon, K. L. The merits of implementing routine outcome monitoring in clinical practice. Clin. Psychol. Sci. Pract. 25(4), e12268 (2018).
Google Scholar
Naragon-Gainey, K. Meta-analysis of the relations of anxiety sensitivity to the depressive and anxiety disorders. Psychol. Bull. 136(1), 128 (2010).
Google Scholar
McEvoy, P. M., Hyett, M. P., Shihata, S., Price, J. E. & Strachan, L. The impact of methodological and measurement factors on transdiagnostic associations with intolerance of uncertainty: A meta-analysis. Clin. Psychol. Rev. 73, 101778 (2019).
Google Scholar
Akbari, M., Seydavi, M., Hosseini, Z. S., Krafft, J. & Levin, M. E. Experiential avoidance in depression, anxiety, obsessive-compulsive related, and posttraumatic stress disorders: A comprehensive systematic review and meta-analysis. J. Context. Behav. Sci. 24, 65–78 (2022).
Google Scholar
Vaz, A. M., Ferreira, L. I., Gelso, C. & Janeiro, L. The sister concepts of working alliance and real relationship: A meta-analysis. Counsel. Psychol. Q. 37(2), 247–268 (2024).
Google Scholar
de Graaf, R., ten Have, M., Tuithof, M. & van Dorsselaer, S. First-incidence of DSM-IV mood, anxiety and substance use disorders and its determinants: Results from the Netherlands Mental Health Survey and Incidence Study-2. J. Affect. Disord. 149(1–3), 100–107 (2013).
Google Scholar
Sharma, S., Powers, A., Bradley, B. & Ressler, K. J. Gene × environment determinants of stress-and anxiety-related disorders. Annu. Rev. Psychol. 67(1), 239–261 (2016).
Google Scholar
Cuijpers, P. Targets and outcomes of psychotherapies for mental disorders: An overview. World Psychiatry 18(3), 276–285 (2019).
Google Scholar
Lundqvist, L. O. et al. Influence of mental health service provision on the perceived quality of life among psychiatric outpatients: Associations and mediating factors. Front. Psychiatry 14, 1282466 (2024).
Google Scholar
McAleavey, A. A., de Jong, K., Nissen-Lie, H. A., Boswell, J. F., Moltu, C. & Lutz, W. (2024). Routine outcome monitoring and clinical feedback in psychotherapy: Recent advances and future directions. Administration and Policy in Mental Health and Mental Health Services Research, 1–15.
link